A Pervasive GPU Computing Strategy

By Michael Feldman

November 23, 2009

NVIDIA is continuing its campaign to nudge the CPU from its dominant position at the center of the computing universe. A trio of announcements this week provides a rough outline of how the company intends to expand its GPU computing footprint.

Cloud Computing Meets the GPU

On Tuesday at the Web 2.0 Summit in San Francisco, NVIDIA announced a new platform that positions the GPU as the engine of a 3D Internet. In a nutshell, the company has constructed a Web services model that employs server-side Tesla GPUs to drive photorealistic imaging to client applications. The idea is to take advantage of the computational muscle of HPC-class GPUs so that high-end imaging applications in areas like medical diagnostics, product design, and manufacturing CAE can be co-located to the cloud. We covered the particulars earlier this week in our feature story.

It’s worth noting that AMD announced something along the same lines back in January of this year when the company revealed plans for a one petaflop GPU-accelerated supercomputer to drive HD content across the Web. The chipmaker called its machine the “AMD Fusion Render Cloud,” but unlike the NVIDIA platform, the supercloud was aimed at online gaming, HD video applications, and film rendering.

At the time, AMD CEO Dirk Meyer said the machine would be powered by 1,000 ATI Radeon HD 4870 processors, and that they plan to have the system up and running by the second half of 2009. In the interim, the company came out with the ATI Radeon HD 5870 GPU, which delivers 2.72 teraflops (single precision) per chip. Using the newer silicon would substantially cut down on the number of GPUs needed for a one petaflop machine. But since AMD has been silent about the GPU supercloud since it was initially announced, it’s conceivable, and even likely, that they shelved the whole project.

NSF Puts GPU Super on Track

On Wednesday, Georgia Tech announced that the NSF is pitching in $12 million over five years to fund a project for two GPU-equipped supercomputers under its Track 2 program. Track 2 is designed to spread federal science money to academia for experimental sub-petascale HPC systems. According to the press release, this is the first Track 2 award to go toward GPU-accelerated supers.

The $12 million will be allocated for the deployment and operation of the HPC machinery, which will be shared across Georgia Tech’s College of Computing, Oak Ridge National Laboratory, and the University of Tennessee, National Institute for Computational Sciences. The systems are targeted for computational science applications, especially biomolecular simulations. Jeffrey Vetter, a computational science who splits his time between Georgia Tech and Oak Ridge National Laboratory, will be the principal investigator for the project, know as Keeneland.

The big winners on the vendor side are HP, who will build the Intel-based HPC systems, and (you guessed it) NVIDIA, who will provide the GPU hardware. The first deployment is slated for “early 2010” and will indeed contain NVIDIA’s next-generation Fermi GPUs. Although the initial systems will be sub-petaflop machines, according to the Keeneland project Web page, in 2012 the supercomputers will be updated to “the next-generation platform and NVIDIA accelerators” and are anticipated to deliver a peak performance of around two petaflops.

Windows 7 Brings GPU Computing API

This week’s debut of Windows 7 brings with it DirectX 11 and the associated DirectCompute API, a Microsoftian invention used to accelerate compute-intensive Windows applications on graphics processors. DirectCompute is essentially Microsoft’s answer to OpenCL for Windows. It is intended to be used in games and other consumer software to speed up multimedia algorithms via the considerable computational prowess of on-board GPUs. This leaves the CPU free to do more mundane tasks, like figuring out what word you’re now misspelling in your document.

Coincidental with the release of Windows 7, NVIDIA decided to remind us that its current crop of DirectX 10 GPUs already support DirectCompute, and its next-gen DirectX 11 Fermi chips will do likewise. Below is a 20 second NVIDIA demo of DirectCompute:

 

Although obviously NVIDIA didn’t mention it, AMD supports DirectCompute as well, and already has DirectX 11 smarts cooked into its silicon today. Not only that, but the aforementioned ATI Radeon HD 5870 outperforms any current NVIDIA hardware for traditional graphics apps pretty handily. By incorporating all the new GPGPU bells and whistles into Fermi, NVIDIA took a several month hit getting its new architecture to market.

By now it’s clear that the two GPU makers have opted for different strategies. With the CUDA architecture, NVIDIA went aggressively for GPGPU, anticipating that applications and markets for discrete graphics processors will fundamentally shift toward computing over the next several years. AMD took the more conservative approach by sticking more closely to ATI’s graphics roots and deciding time to market plus raw performance will win the day. Time will tell which vendor made the better choice.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This