A Pervasive GPU Computing Strategy

By Michael Feldman

November 23, 2009

NVIDIA is continuing its campaign to nudge the CPU from its dominant position at the center of the computing universe. A trio of announcements this week provides a rough outline of how the company intends to expand its GPU computing footprint.

Cloud Computing Meets the GPU

On Tuesday at the Web 2.0 Summit in San Francisco, NVIDIA announced a new platform that positions the GPU as the engine of a 3D Internet. In a nutshell, the company has constructed a Web services model that employs server-side Tesla GPUs to drive photorealistic imaging to client applications. The idea is to take advantage of the computational muscle of HPC-class GPUs so that high-end imaging applications in areas like medical diagnostics, product design, and manufacturing CAE can be co-located to the cloud. We covered the particulars earlier this week in our feature story.

It’s worth noting that AMD announced something along the same lines back in January of this year when the company revealed plans for a one petaflop GPU-accelerated supercomputer to drive HD content across the Web. The chipmaker called its machine the “AMD Fusion Render Cloud,” but unlike the NVIDIA platform, the supercloud was aimed at online gaming, HD video applications, and film rendering.

At the time, AMD CEO Dirk Meyer said the machine would be powered by 1,000 ATI Radeon HD 4870 processors, and that they plan to have the system up and running by the second half of 2009. In the interim, the company came out with the ATI Radeon HD 5870 GPU, which delivers 2.72 teraflops (single precision) per chip. Using the newer silicon would substantially cut down on the number of GPUs needed for a one petaflop machine. But since AMD has been silent about the GPU supercloud since it was initially announced, it’s conceivable, and even likely, that they shelved the whole project.

NSF Puts GPU Super on Track

On Wednesday, Georgia Tech announced that the NSF is pitching in $12 million over five years to fund a project for two GPU-equipped supercomputers under its Track 2 program. Track 2 is designed to spread federal science money to academia for experimental sub-petascale HPC systems. According to the press release, this is the first Track 2 award to go toward GPU-accelerated supers.

The $12 million will be allocated for the deployment and operation of the HPC machinery, which will be shared across Georgia Tech’s College of Computing, Oak Ridge National Laboratory, and the University of Tennessee, National Institute for Computational Sciences. The systems are targeted for computational science applications, especially biomolecular simulations. Jeffrey Vetter, a computational science who splits his time between Georgia Tech and Oak Ridge National Laboratory, will be the principal investigator for the project, know as Keeneland.

The big winners on the vendor side are HP, who will build the Intel-based HPC systems, and (you guessed it) NVIDIA, who will provide the GPU hardware. The first deployment is slated for “early 2010” and will indeed contain NVIDIA’s next-generation Fermi GPUs. Although the initial systems will be sub-petaflop machines, according to the Keeneland project Web page, in 2012 the supercomputers will be updated to “the next-generation platform and NVIDIA accelerators” and are anticipated to deliver a peak performance of around two petaflops.

Windows 7 Brings GPU Computing API

This week’s debut of Windows 7 brings with it DirectX 11 and the associated DirectCompute API, a Microsoftian invention used to accelerate compute-intensive Windows applications on graphics processors. DirectCompute is essentially Microsoft’s answer to OpenCL for Windows. It is intended to be used in games and other consumer software to speed up multimedia algorithms via the considerable computational prowess of on-board GPUs. This leaves the CPU free to do more mundane tasks, like figuring out what word you’re now misspelling in your document.

Coincidental with the release of Windows 7, NVIDIA decided to remind us that its current crop of DirectX 10 GPUs already support DirectCompute, and its next-gen DirectX 11 Fermi chips will do likewise. Below is a 20 second NVIDIA demo of DirectCompute:

 

Although obviously NVIDIA didn’t mention it, AMD supports DirectCompute as well, and already has DirectX 11 smarts cooked into its silicon today. Not only that, but the aforementioned ATI Radeon HD 5870 outperforms any current NVIDIA hardware for traditional graphics apps pretty handily. By incorporating all the new GPGPU bells and whistles into Fermi, NVIDIA took a several month hit getting its new architecture to market.

By now it’s clear that the two GPU makers have opted for different strategies. With the CUDA architecture, NVIDIA went aggressively for GPGPU, anticipating that applications and markets for discrete graphics processors will fundamentally shift toward computing over the next several years. AMD took the more conservative approach by sticking more closely to ATI’s graphics roots and deciding time to market plus raw performance will win the day. Time will tell which vendor made the better choice.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This