AMD Server Roadmap: Cores, Lots of Them

By Michael Feldman

December 1, 2009

Even though SC09 was something of a coming out party for GPU computing, CPUs are the foundation of high performance computing. The x86 architecture, in particular, continues to dominate the space, with Intel clearly owning the majority of the HPC server market. That dominance will probably remain for the foreseeable future. AMD’s server roadmap over the next couple of years may be able to blunt some of its rival’s momentum, but there are no magic bullets in the company’s arsenal.

At AMD’s Financial Analyst Day on November 11, the company laid out its 2010-2011 product roadmap across all its markets. This year the company focused a lot more on its client-side products, with quite a bit of emphasis devoted to its CPU-GPU “Fusion” chip strategy (which I’ll get to in a moment). For the near term, AMD’s Opteron processors will be carrying the HPC load.

In early 2010, the 45nm “Magny-Cours” processor family will kick off the Opteron 6000 series, using the new “Maranello” platform and G34 socket. Magny-Cours will fulfill the 2P and 4P/8P server markets and is positioned as the “performance” Opteron chip. As such, it is expected to attract the majority of HPC server adoption, although the lower-power 1P and 2P Opteron 4000 series chips may be employed in certain cases. Magny-Cours will come with 8 or 12 cores, doubling up on the previous generation’s Shanghai and Istanbul processors, respectively. Likewise, the memory channels have doubled from 2 to 4, just to keep cores and memory bandwidth in balance. Other enhancements include DDR3 memory support and an Enhanced C1 state (C1E) to reduce power consumption under partial loads.

None of this is news. AMD has been talking up Magny-Cours for awhile now. However, the company did offer some new details about “Interlagos,” the Magny-Cours sequel that’s scheduled for release in 2011. Interlagos will be on the 32nm process node and will come in 12- and 16-core flavors. But it’s more than just core addition enabled by a process shrink. Interlagos will be based on the next-generation “Bulldozer” core architecture, which turns out to be a rather unique design.

According to AMD, each Bulldozer ” module consists of two integer “cores” plus a floating point unit (FPU) that encompasses two 128-bit wide FMACs. Each core and the FPU, has its own instruction scheduler. The FPU itself can either be dedicated to one of the integer cores or shared between the two of them. On the surface it looks as if AMD scrimped on floating point execution in favor of integer execution, but until more details are revealed on how Bulldozer performs on real workloads, it’s probably best to withhold judgement.

 Apparently AMD is counting the integer cores as actual cores, so a 16-core Interlagos processor would be made up of 8 Bulldozer modules. In reality, each module appears as a single core to software, but can carry two threads in SMT fashion. It seems like AMD has needlessly confused the semantics here. It probably would have been better just to call each Bulldozer module a core, with the further explanation that dedicated hardware exists to serve two threads of control simultaneously.

While AMD is going core happy, Intel will be doing its usual tick-tock routine. The 32nm “Westmere” shrink of Nehalem is due out in 2010, with the six-core Westmere EP slated for release in the first half of the year. In 2011, the new “Sandy Bridge” microarchitecture products will show up to meet Bulldozer head on. Trying to battle Intel in the CPU arena is going to be tough for AMD. Intel is about a year ahead of its smaller rival in semiconductor process technology, and has a much larger R&D effort to drive engineering innovation.

Where AMD has the upper hand is its GPU technology, courtesy of its ATI division. That’s why the company’s big focus for the next couple of years will be to fulfill its so-called Fusion strategy of integrating CPU and GPU IP onto the same die. It’s something CPU-centric Intel and, to a lesser extent, GPU-centric NVIDIA are also pursuing, but without the benefit of strong technologies in both areas.

The idea is to create an heterogeneous chip architecture that combines the CPU’s strength in sequential processing with the GPU’s superior data parallel processing capabilities. AMD calls this new architecture an APU (for Accelerated Processing Unit). Applications that mix video, audio, and graphics into more traditional applications will be the main beneficiaries, but that happens to represent a lot of the Web-related content at the heart of computing today. “I think Fusion is going to bring the forward pass to the computing business,” gushed AMD CEO Dirk Meyer at the recent Financial Analyst Day.

Unfortunately for HPC users, for the time being all of AMD’s Fusion efforts are aimed at the client side. The first APU, called Llano, is scheduled to show up in 2011. The GPU performance of these heterogeneous chips won’t rival discrete graphics devices, since die real estate obviously has to be shared with CPU resources. So in the near term at least, AMD will continue to offer standalone GPU products for high-end graphics users and, presumably, HPC users via its FireStream products. The only suggestion that APUs might extend beyond the client space was offered on a slide of AMD’s server roadmap, which had heterogeneous computing appear after 2012.

AMD’s focus on client computing is understandable since that is where most of the growth opportunities exist, albeit at smaller margins than the server space. Even in the latter market, AMD is focusing on mainstream enterprise needs. According to them, their “performance cluster” segment represents only 5 percent of their total server market, giving them little incentive to craft specialty products for the high end. In fact, Intel is more likely to be adventuresome, inasmuch as it can leverage a greater economy of scale than its smaller competitor. The chip maker’s recent announcement of a new collaboration with NEC is an example of the way Intel is pursuing special-purpose HPC.

Despite the dominance of Intel, most HPC system vendors are expected to continue to offer Opteron-based hardware. Certainly AMD’s devotion to upgradeability has made the system vendor’s life a little easier. And in any case, no one wants to return to a single source x86 world.

Cray is sort of a special case. At SC09, the company announced the XT6 (and mid-range XT6m) supercomputer, which will incorporate the Magny-Cours processor, thus fulfilling Cray’s commitment to stick with AMD until at least 2010. Since AMD will introduce the G34-compatible Interlagos in 2011, one can assume at XT6 gear will be socket upgradeable for at least another year. Beyond that, or maybe even before the XT6 has run its course, Cray may exercise its Intel option. When the supercomputer maker brought Intel inside in 2008, certainly it had more in mind than using Xeon silicon for its deskside CX1 system. I would expect to see a high-end supercomputer line with Intel processors introduced sometime within the next couple of years.

The wild card is NVIDIA. If more high performance computing over the next couple of years begins to rely on NVIDIA GPUs (or even AMD/ATI GPUs) to drive performance, the choice of CPU is calculated differently. In this case, cost and power concerns would tend to override performance, placing Opterons on a more even playing field with their Xeon counterparts. And if AMD and NVIDIA could bring themselves to collaborate on some sort of mutually-beneficial Opteron CPU/Fermi GPU arrangement, that might present an interesting challenge to Intel’s preeminence in HPC.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This