IBM Ponders the Exascale

By Michael Feldman

December 9, 2009

Over the next ten years of HPC history, the mainstream teraflop systems of today will evolve into the petaflop systems of tomorrow, while the leading-edge petaflop supercomputers will be replaced by exaflop machines. Of course, it will be up to a select few high performance computing vendors to fulfill this vision. As the most diverse player in the HPC server business, IBM has some unique advantages as it charts a path toward the exascale milestone.

One challenge for IBM will be to decide what roles its current server architectures play in the upcoming decade. Today, the company offers three basic platforms: its various flavors of x86 clusters, the Blue Gene architecture, and Power-based systems. That mix enables the company not only to own a big chunk of the overall HPC server market — 26 percent in 2008, according to IDC — but also to claim a dominant position in creating the top supercomputing systems in the world. In the latest TOP500 rankings from November 2009, IBM claimed 35 percent of the aggregate Linpack FLOPS of the machines on that list, which happens to be tops among all vendors.

According to Dave Turek, vice president for Deep Computing at IBM, even though the commercial (read mainstream) HPC market is growing faster than the cutting edge systems, it’s commitment to elite supercomputing remains strong. The rationale is that investments in high-end technology, both hardware and software, will trickle down to mid-range and low-end systems. For example, advancements in water cooling technology, which used to be a feature only in top-of-the-line machines, have spread into mainstream servers like IBM’s iDataPlex offerings. In fact, Turek expects the investments at the high end will reap greater benefits in the future than they have in the past, simply because the base of opportunity will grow more dramatically.

According to him, over the next few years, petascale computing offerings at IBM will be represented by PowerPC-based Blue Gene (/P and /Q) and Power7-based systems. “The Power side of the equation, in its various forms, will really be the centerpiece of what we do toward exascale,” says Turek. Note that PowerPC is actually an offshoot of the original Power CPUs — they have overlapping instruction sets (although the PowerPC pedigree is in low-power embedded applications, while Power CPUs have always been high-end server chips). The other interesting aspect to this is that if you discount the minor role Sparc plays, the Power and PowerPC architectures represents the last vestige of RISC CPUs in high performance computing.

At this point, IBM is much less interested in pushing x86 into multi-petaflop systems, as some of its competitors like Cray and SGI are doing, not only because of the difficulties of scaling systems based on general-purpose CPUs, but also because IBM has the luxury of driving its supercomputing aspirations with in-house technology.

Over the next few years, the Power7-based system will start to come into its own at the high end, thanks in no small part to the HPCS DARPA program which helped to drive IBM’s Power roadmap into the multi-petaflop domain. The first commercial Power7-based servers will start shipping in the first half of 2010, but its big HPC debut will be in 2011, when the “Blue Waters” supercomputer boots up at the University of Illinois at Urbana-Champaign. That machine is aiming at 10 petaflops, which is about five time the performance of ORNL’s Jaguar, the current supercomputing champ. When Blue Waters deploys it may not be the fastest supercomputer in the world, although it will surely be among the top systems.

At the recent SC09 conference, IBM was displaying some of its HPC Power7 server gear, and there was plenty to be impressed about. As expected, the Power7 implementation encompasses 8 cores and supports 4 threads per core in SMT fashion. The die contains 32 MB of embedded DRAM (EDRAM) cache, rather than static RAM (SRAM), which is faster but draws more power and requires more transistor real estate. Two DDR3 memory controllers per CPU are able to deliver 100 GB/sec of memory bandwidth (providing about 0.5 bytes per FLOP). The node includes 4 chips in a multi-chip module (MCM), 8 of which can fit in a 2U chassis, delivering about 8 teraflops of raw computing power.

As you might imagine, that much performance required a good deal of power, which is estimated to be around 800 watts per module. But since the promised performance is so high, you need far fewer servers than you would in a conventional x86-based systems to deliver comparable performance. By necessity, these HPC Power7 nodes will be water cooled, right down to the level of the chip modules themselves, greatly improving the energy efficiency.

In general, the overall design of these cutting-edge systems is focused on getting the most FLOPS/watt in the densest possible configuration. As IBM considers how to achieve three orders of magnitude improvement to reach the exaflop level in the next decade, both density and power are at the forefront of their concerns. “The energy problem, in particular, is a multi-headed hydra,” says Turek.

For years, system designers have focused on the power drawn by the CPU. Now the I/O and memory subsystems are starting to get the attention they deserve. “For exascale systems, our calculations are that the memory subsystem, left to its own devices, would be consuming on the order of 80 megawatts of power,” says Turek. According to him, the power draw by the system interconnect would be roughly the same.

The problem, of course, is that power and, to a lesser extent, space, are limited resources. They’re also resources that are not distributed evenly across the globe, which is why people are talking about deploying supercomputers in Iceland — a place where power, cooling, and real estate are rather inexpensive. However, that doesn’t help IBM or any other computer vendor very much. “From a business perspective you want to pursue a pathway that takes geography out of the question, in terms of who gets to buy and who gets to deploy,” says Turek.

It’s an open question whether Power-based systems or the Blue Gene franchise will make the trip to exascale. Like other vendors’ roadmaps, IBM’s only ventures a couple of years into the future. For the time being, the company has apparently killed the HPC Cell variant line (PowerXCell) that went into the company’s QS22 blades and powered its famous Roadrunner supercomputer. However, some Cell processor DNA will probably end up in future chips (and even in the current Power7 CPU according to a recent CNET News report) since vector-style computing seems like the shortest path to exaflops right now. And although IBM has no current plans to embrace GPGPUs in a big way, events over the next several years could always change its calculation. “Nothing stays static, for long,” concludes Turek. “That’s for sure.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This