2009-2019: A Look Back on a Decade of Supercomputing

By Andrew Jones

December 15, 2009

As we turn the decade into the 2020s, we take a nostalgic look back at the last ten years of supercomputing. It’s amazing to think how much has changed in that time. Many of our older readers will recall how things were before the official Planetary Supercomputing Facilities at Shanghai, Oak Ridge and Saclay were established. Strange as it may seem now, each country — in fact, each university or company — had its own supercomputer!

Hindsight is easier, of course, but it is interesting to review how this major change in supercomputing came to happen over the last few years.

At the start of the decade, each major university, research centre or company using simulation & modelling had its own HPC resources — they owned it or leased it, operated it, housed it, etc. In addition, some countries (US, UK, Germany, etc.) operated their own national resources for open research. The national facilities were larger than individual institutions could afford, and access to these was usually by a mechanism known as “peer review” — the prospective user would write a short case describing how their science would benefit from using the facility and a group of fellow scientists would judge if the science was worthy. (Note: they rated the science, almost never the quality of the computing implementation!) Very often these national supercomputers were reserved for capability computations, similar to today’s Strategic Simulation category at Shanghai.

The highest profile facilities were those in major research centres (e.g., universities, US DOE labs, etc.) but many commercial organisations had very large facilities too, although these weren’t as well publicised since companies had begun to recognise their use of HPC as a strategic competitive asset. The world’s fastest supercomputers were ranked twice yearly on the TOP500 list. One of the key uses of the TOP500 was for tracking the increasing performance of supercomputing power, usually through a plot showing performance on a vertical logarithmic axis against years on a horizontal axis, and especially two trends on this plot: the reasonably linear growth (on the log scale) of the performance of the fastest machine at any one time; and the smooth linearly (log scale) increasing sum of performance of the 500 systems on the list. The first spark towards the Planetary Supercomputing Facilities came when someone asked “what if we could actually use the compute power of that sum line at once?”

Another factor was the increasing cost of the facilities provision — from computer acquisition (capital) to power (both capital for infrastructure and recurrent for operations) to site management (recurrent and capital, project management, etc.).

Based on this, a number of collaborations started to occur. In Europe, over 20 countries joined together for the two-year PRACE initiative to explore how a pan-European supercomputer service could work in practice. Much was learned from that project and the influences can be seen in the three Planetary Supercomputing Facilities. In the US, ORNL, originally a DOE open science national supercomputing centre, started to host other national facilities (initially for NSF, NOAA and DoD). In fact, ORNL was probably the first planetary supercomputing facility in practice, even though, as we know, Shanghai was the first official Planetary Supercomputing Facility.

People started to realise that operating these large supercomputers was not the interesting part of HPC, and was in fact a very specialist job. As more and more aggregation between national operating sites occurred, and as the scale limited the potential sites (due to power constraints, etc.), it became apparent that there would only be a few sites worldwide capable of fulfilling the growth predicted by the original TOP500 trends.

Then of course came what I call “the public realisation”. Politicians, the public, and Boards finally got it. Supercomputing made a difference. It wasn’t just big rooms of computers costing lots of tax dollars. It was a tool to underpin science, and often to propel it forward. It was a tool for accelerating any properly-formulated computational task, many even with impact on daily life. Better weather predictions. Better design and safety testing of household products. Consumer video/image processing (I remember trying to do early video processing on my own PC!). Speech processing — think how that has revolutionized mobile communications since the early days of typing email messages on BlackBerrys and the like.

And then the critical step — businesses and researchers finally understood that their competitive asset was the capabilities of their modelling software and user expertise — not the hardware itself. Successful businesses rushed to establish a lead over their competitors by investing in their modelling capability — especially robustness (getting trustable predictions/analysis), scalability (being able to process much larger datasets than before) and performance (driving down time to solutions).

As this “software arms race” was put into practice (led by the commercial users) — slowly at first but then with a surge of investment in robust scalable high performance software — money spent on hardware ceased to be the competitive difference. Coupled with the massive increase in demand for HPC resources following the public realisation, and the challenges of managing large facilities, this led to the announcement of the first Planetary Supercomputer Facility in Shanghai. Whilst there was initially preferential access for Chinese domestic users, anyone in the world could use the facility — from consumers to researchers to businesses. After years of trying to exploit commodity components, HPC itself became a commodity service. And this was true HPC, supporting tightly-coupled large simulations, not the earlier attempts at something daftly called “cloud computing,” which only really supported large numbers of very small jobs. The facility shocked the world with its scale — being larger not only than the then top machine on the TOP500, but also larger than the sum of the 500 systems.

The business case for individual ownership of HPC facilities worldwide suddenly became dramatically tougher to justify, with Shanghai providing all classes of computer resources at scale, including the various specialist processing types. Everyone got better HPC, whether capacity or capability, and cheaper HPC than they could ever provide locally. The consumer demand drove innovations in ease-of-use and accounting that previously were only ambitions of seemingly-perpetual academic research.

The international agreements from research funding agencies on behalf of their user communities and from consumer HPC brokers soon followed, confirming the official Planetary Supercomputing Facility status. Within a year, the US had followed suit, securing global agreement for Oak Ridge as the second official Planetary Supercomputing Facility, and of course deployed even more powerful resources than Shanghai.

Soon, the main security concerns had been solved. Network bandwidth that plagued earlier global collaborations went away, as data rarely needed to leave the facilities (or if so, only to transfer between Oak Ridge and Shanghai, which now had massive dedicated bandwidth). Anything that might be done with the data could be done at Oak Ridge or Shanghai — the data never needed to go anywhere else.

With the opening last year of the third and final Planetary Supercomputing Facility at Saclay, the world’s HPC is now ready to sprint into the next decade. We have now left the housing and daily care of the hardware to the specialists. The volume of public and private demand has set the scene for strong HPC provision into the future. We have the three official global providers to ensure consumer choice, with its competitive benefits, but few enough providers to underpin their business cases for the most capable possible HPC infrastructure.

With the pervasiveness of HPC in consumer, business and research arenas, and the long overdue acceptance of the truth that the software capabilities and performance at scale was the competitive asset, “can program HPC at scale” is now more than ever a valuable item for your CV.

For all this astounding progress, I wonder how quaint today’s world will seem when we look back from 2030. After all, just imagine someone reading this in 2009!

2009 Author’s Note: This is not intended to be a prediction nor vision for the next decade, merely some seasonal fun looking at some unlikely extremes of how our community might develop. After all, we’ve had reports saying “it’s the software” for years — so are the chances of us finally doing anything about it more or less likely than the Planetary Supercomputing Facilities?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized silicon designs catered toward general-purpose cloud computing Read more…

By Tiffany Trader

The Internet of Criminal Things—Trust in the Gods but Verify!

February 20, 2019

“Are we under attack?” asked Professor Elmarie Biermann of the Cyber Security Institute during the recent South African Centre for High Performance Computing’s (CHPC) National Conference in Cape Town. A quick show Read more…

By Elizabeth Leake, STEM-Trek

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

The Perils of Becoming Trapped in the Cloud

Terms like ‘open systems’ have been bandied about for decades. While modern computer systems are relatively open compared to their predecessors, there are still plenty of opportunities to become locked into proprietary interfaces. Read more…

Machine Learning Takes Heat for Science’s Reproducibility Crisis

February 19, 2019

Scientists are raising red flags about the accuracy and reproducibility of conclusions drawn by machine learning frameworks. Among the remedies are developing new ML systems that can question their own predictions, show Read more…

By George Leopold

HPC in Life Sciences Part 1: CPU Choices, Rise of Data Lakes, Networking Challenges, and More

February 21, 2019

For the past few years HPCwire and leaders of BioTeam, a research computing consultancy specializing in life sciences, have convened to examine the state of HPC (and now AI) use in life sciences. Without HPC writ large, modern life sciences research would quickly grind to a halt. It’s true most life sciences research computing... Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effects in new materials to supporting bioinformatics for advanced healthcare research to screening millions of possible chemical combinations to attack a deadly virus. Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This