2009-2019: A Look Back on a Decade of Supercomputing

By Andrew Jones

December 15, 2009

As we turn the decade into the 2020s, we take a nostalgic look back at the last ten years of supercomputing. It’s amazing to think how much has changed in that time. Many of our older readers will recall how things were before the official Planetary Supercomputing Facilities at Shanghai, Oak Ridge and Saclay were established. Strange as it may seem now, each country — in fact, each university or company — had its own supercomputer!

Hindsight is easier, of course, but it is interesting to review how this major change in supercomputing came to happen over the last few years.

At the start of the decade, each major university, research centre or company using simulation & modelling had its own HPC resources — they owned it or leased it, operated it, housed it, etc. In addition, some countries (US, UK, Germany, etc.) operated their own national resources for open research. The national facilities were larger than individual institutions could afford, and access to these was usually by a mechanism known as “peer review” — the prospective user would write a short case describing how their science would benefit from using the facility and a group of fellow scientists would judge if the science was worthy. (Note: they rated the science, almost never the quality of the computing implementation!) Very often these national supercomputers were reserved for capability computations, similar to today’s Strategic Simulation category at Shanghai.

The highest profile facilities were those in major research centres (e.g., universities, US DOE labs, etc.) but many commercial organisations had very large facilities too, although these weren’t as well publicised since companies had begun to recognise their use of HPC as a strategic competitive asset. The world’s fastest supercomputers were ranked twice yearly on the TOP500 list. One of the key uses of the TOP500 was for tracking the increasing performance of supercomputing power, usually through a plot showing performance on a vertical logarithmic axis against years on a horizontal axis, and especially two trends on this plot: the reasonably linear growth (on the log scale) of the performance of the fastest machine at any one time; and the smooth linearly (log scale) increasing sum of performance of the 500 systems on the list. The first spark towards the Planetary Supercomputing Facilities came when someone asked “what if we could actually use the compute power of that sum line at once?”

Another factor was the increasing cost of the facilities provision — from computer acquisition (capital) to power (both capital for infrastructure and recurrent for operations) to site management (recurrent and capital, project management, etc.).

Based on this, a number of collaborations started to occur. In Europe, over 20 countries joined together for the two-year PRACE initiative to explore how a pan-European supercomputer service could work in practice. Much was learned from that project and the influences can be seen in the three Planetary Supercomputing Facilities. In the US, ORNL, originally a DOE open science national supercomputing centre, started to host other national facilities (initially for NSF, NOAA and DoD). In fact, ORNL was probably the first planetary supercomputing facility in practice, even though, as we know, Shanghai was the first official Planetary Supercomputing Facility.

People started to realise that operating these large supercomputers was not the interesting part of HPC, and was in fact a very specialist job. As more and more aggregation between national operating sites occurred, and as the scale limited the potential sites (due to power constraints, etc.), it became apparent that there would only be a few sites worldwide capable of fulfilling the growth predicted by the original TOP500 trends.

Then of course came what I call “the public realisation”. Politicians, the public, and Boards finally got it. Supercomputing made a difference. It wasn’t just big rooms of computers costing lots of tax dollars. It was a tool to underpin science, and often to propel it forward. It was a tool for accelerating any properly-formulated computational task, many even with impact on daily life. Better weather predictions. Better design and safety testing of household products. Consumer video/image processing (I remember trying to do early video processing on my own PC!). Speech processing — think how that has revolutionized mobile communications since the early days of typing email messages on BlackBerrys and the like.

And then the critical step — businesses and researchers finally understood that their competitive asset was the capabilities of their modelling software and user expertise — not the hardware itself. Successful businesses rushed to establish a lead over their competitors by investing in their modelling capability — especially robustness (getting trustable predictions/analysis), scalability (being able to process much larger datasets than before) and performance (driving down time to solutions).

As this “software arms race” was put into practice (led by the commercial users) — slowly at first but then with a surge of investment in robust scalable high performance software — money spent on hardware ceased to be the competitive difference. Coupled with the massive increase in demand for HPC resources following the public realisation, and the challenges of managing large facilities, this led to the announcement of the first Planetary Supercomputer Facility in Shanghai. Whilst there was initially preferential access for Chinese domestic users, anyone in the world could use the facility — from consumers to researchers to businesses. After years of trying to exploit commodity components, HPC itself became a commodity service. And this was true HPC, supporting tightly-coupled large simulations, not the earlier attempts at something daftly called “cloud computing,” which only really supported large numbers of very small jobs. The facility shocked the world with its scale — being larger not only than the then top machine on the TOP500, but also larger than the sum of the 500 systems.

The business case for individual ownership of HPC facilities worldwide suddenly became dramatically tougher to justify, with Shanghai providing all classes of computer resources at scale, including the various specialist processing types. Everyone got better HPC, whether capacity or capability, and cheaper HPC than they could ever provide locally. The consumer demand drove innovations in ease-of-use and accounting that previously were only ambitions of seemingly-perpetual academic research.

The international agreements from research funding agencies on behalf of their user communities and from consumer HPC brokers soon followed, confirming the official Planetary Supercomputing Facility status. Within a year, the US had followed suit, securing global agreement for Oak Ridge as the second official Planetary Supercomputing Facility, and of course deployed even more powerful resources than Shanghai.

Soon, the main security concerns had been solved. Network bandwidth that plagued earlier global collaborations went away, as data rarely needed to leave the facilities (or if so, only to transfer between Oak Ridge and Shanghai, which now had massive dedicated bandwidth). Anything that might be done with the data could be done at Oak Ridge or Shanghai — the data never needed to go anywhere else.

With the opening last year of the third and final Planetary Supercomputing Facility at Saclay, the world’s HPC is now ready to sprint into the next decade. We have now left the housing and daily care of the hardware to the specialists. The volume of public and private demand has set the scene for strong HPC provision into the future. We have the three official global providers to ensure consumer choice, with its competitive benefits, but few enough providers to underpin their business cases for the most capable possible HPC infrastructure.

With the pervasiveness of HPC in consumer, business and research arenas, and the long overdue acceptance of the truth that the software capabilities and performance at scale was the competitive asset, “can program HPC at scale” is now more than ever a valuable item for your CV.

For all this astounding progress, I wonder how quaint today’s world will seem when we look back from 2030. After all, just imagine someone reading this in 2009!

2009 Author’s Note: This is not intended to be a prediction nor vision for the next decade, merely some seasonal fun looking at some unlikely extremes of how our community might develop. After all, we’ve had reports saying “it’s the software” for years — so are the chances of us finally doing anything about it more or less likely than the Planetary Supercomputing Facilities?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Neural Network ‘Synapse’ Technology Showcased at IEEE Meeting

December 12, 2018

There’s nice snapshot of advancing work to develop improved neural network “synapse” technologies posted yesterday on IEEE Spectrum. Lower power, ease of use, manufacturability, and performance are all key paramete Read more…

By John Russell

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to provide what the companies call the “the highest performance Read more…

By Doug Black

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology creators in hardware and software. The most recent example bei Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Blurring the Lines Between HPC and AI @ SC18

The dominant topic at SC18 was the convergence of HPC and Artificial Intelligence (AI) with some of the biggest research and enterprise HPC users providing perspectives on how HPC and AI are moving closer together. Read more…

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

IBM, Nvidia in AI Data Pipeline, Processing, Storage Union

December 11, 2018

IBM and Nvidia today announced a new turnkey AI solution that combines IBM Spectrum Scale scale-out file storage with Nvidia’s GPU-based DGX-1 AI server to pr Read more…

By Doug Black

Is Amazon’s Plunge into Server Chips a Watershed Moment?

December 11, 2018

For several years now the big cloud providers – Amazon, Microsoft Azure, Google, et al – have been transforming from technology consumers into technology cr Read more…

By John Russell

Mellanox Uses Univa to Extend Silicon Design HPC Operation to Azure

December 11, 2018

Call it a corollary to Murphy’s Law: When a system is most in demand, when end users are most dependent on the system performing as required, when it’s crunch time – that’s when the system is most likely to blow up. Or make you wait in line to use it. Read more…

By Doug Black

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This