2009-2019: A Look Back on a Decade of Supercomputing

By Andrew Jones

December 15, 2009

As we turn the decade into the 2020s, we take a nostalgic look back at the last ten years of supercomputing. It’s amazing to think how much has changed in that time. Many of our older readers will recall how things were before the official Planetary Supercomputing Facilities at Shanghai, Oak Ridge and Saclay were established. Strange as it may seem now, each country — in fact, each university or company — had its own supercomputer!

Hindsight is easier, of course, but it is interesting to review how this major change in supercomputing came to happen over the last few years.

At the start of the decade, each major university, research centre or company using simulation & modelling had its own HPC resources — they owned it or leased it, operated it, housed it, etc. In addition, some countries (US, UK, Germany, etc.) operated their own national resources for open research. The national facilities were larger than individual institutions could afford, and access to these was usually by a mechanism known as “peer review” — the prospective user would write a short case describing how their science would benefit from using the facility and a group of fellow scientists would judge if the science was worthy. (Note: they rated the science, almost never the quality of the computing implementation!) Very often these national supercomputers were reserved for capability computations, similar to today’s Strategic Simulation category at Shanghai.

The highest profile facilities were those in major research centres (e.g., universities, US DOE labs, etc.) but many commercial organisations had very large facilities too, although these weren’t as well publicised since companies had begun to recognise their use of HPC as a strategic competitive asset. The world’s fastest supercomputers were ranked twice yearly on the TOP500 list. One of the key uses of the TOP500 was for tracking the increasing performance of supercomputing power, usually through a plot showing performance on a vertical logarithmic axis against years on a horizontal axis, and especially two trends on this plot: the reasonably linear growth (on the log scale) of the performance of the fastest machine at any one time; and the smooth linearly (log scale) increasing sum of performance of the 500 systems on the list. The first spark towards the Planetary Supercomputing Facilities came when someone asked “what if we could actually use the compute power of that sum line at once?”

Another factor was the increasing cost of the facilities provision — from computer acquisition (capital) to power (both capital for infrastructure and recurrent for operations) to site management (recurrent and capital, project management, etc.).

Based on this, a number of collaborations started to occur. In Europe, over 20 countries joined together for the two-year PRACE initiative to explore how a pan-European supercomputer service could work in practice. Much was learned from that project and the influences can be seen in the three Planetary Supercomputing Facilities. In the US, ORNL, originally a DOE open science national supercomputing centre, started to host other national facilities (initially for NSF, NOAA and DoD). In fact, ORNL was probably the first planetary supercomputing facility in practice, even though, as we know, Shanghai was the first official Planetary Supercomputing Facility.

People started to realise that operating these large supercomputers was not the interesting part of HPC, and was in fact a very specialist job. As more and more aggregation between national operating sites occurred, and as the scale limited the potential sites (due to power constraints, etc.), it became apparent that there would only be a few sites worldwide capable of fulfilling the growth predicted by the original TOP500 trends.

Then of course came what I call “the public realisation”. Politicians, the public, and Boards finally got it. Supercomputing made a difference. It wasn’t just big rooms of computers costing lots of tax dollars. It was a tool to underpin science, and often to propel it forward. It was a tool for accelerating any properly-formulated computational task, many even with impact on daily life. Better weather predictions. Better design and safety testing of household products. Consumer video/image processing (I remember trying to do early video processing on my own PC!). Speech processing — think how that has revolutionized mobile communications since the early days of typing email messages on BlackBerrys and the like.

And then the critical step — businesses and researchers finally understood that their competitive asset was the capabilities of their modelling software and user expertise — not the hardware itself. Successful businesses rushed to establish a lead over their competitors by investing in their modelling capability — especially robustness (getting trustable predictions/analysis), scalability (being able to process much larger datasets than before) and performance (driving down time to solutions).

As this “software arms race” was put into practice (led by the commercial users) — slowly at first but then with a surge of investment in robust scalable high performance software — money spent on hardware ceased to be the competitive difference. Coupled with the massive increase in demand for HPC resources following the public realisation, and the challenges of managing large facilities, this led to the announcement of the first Planetary Supercomputer Facility in Shanghai. Whilst there was initially preferential access for Chinese domestic users, anyone in the world could use the facility — from consumers to researchers to businesses. After years of trying to exploit commodity components, HPC itself became a commodity service. And this was true HPC, supporting tightly-coupled large simulations, not the earlier attempts at something daftly called “cloud computing,” which only really supported large numbers of very small jobs. The facility shocked the world with its scale — being larger not only than the then top machine on the TOP500, but also larger than the sum of the 500 systems.

The business case for individual ownership of HPC facilities worldwide suddenly became dramatically tougher to justify, with Shanghai providing all classes of computer resources at scale, including the various specialist processing types. Everyone got better HPC, whether capacity or capability, and cheaper HPC than they could ever provide locally. The consumer demand drove innovations in ease-of-use and accounting that previously were only ambitions of seemingly-perpetual academic research.

The international agreements from research funding agencies on behalf of their user communities and from consumer HPC brokers soon followed, confirming the official Planetary Supercomputing Facility status. Within a year, the US had followed suit, securing global agreement for Oak Ridge as the second official Planetary Supercomputing Facility, and of course deployed even more powerful resources than Shanghai.

Soon, the main security concerns had been solved. Network bandwidth that plagued earlier global collaborations went away, as data rarely needed to leave the facilities (or if so, only to transfer between Oak Ridge and Shanghai, which now had massive dedicated bandwidth). Anything that might be done with the data could be done at Oak Ridge or Shanghai — the data never needed to go anywhere else.

With the opening last year of the third and final Planetary Supercomputing Facility at Saclay, the world’s HPC is now ready to sprint into the next decade. We have now left the housing and daily care of the hardware to the specialists. The volume of public and private demand has set the scene for strong HPC provision into the future. We have the three official global providers to ensure consumer choice, with its competitive benefits, but few enough providers to underpin their business cases for the most capable possible HPC infrastructure.

With the pervasiveness of HPC in consumer, business and research arenas, and the long overdue acceptance of the truth that the software capabilities and performance at scale was the competitive asset, “can program HPC at scale” is now more than ever a valuable item for your CV.

For all this astounding progress, I wonder how quaint today’s world will seem when we look back from 2030. After all, just imagine someone reading this in 2009!

2009 Author’s Note: This is not intended to be a prediction nor vision for the next decade, merely some seasonal fun looking at some unlikely extremes of how our community might develop. After all, we’ve had reports saying “it’s the software” for years — so are the chances of us finally doing anything about it more or less likely than the Planetary Supercomputing Facilities?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This