2009-2019: A Look Back on a Decade of Supercomputing

By Andrew Jones

December 15, 2009

As we turn the decade into the 2020s, we take a nostalgic look back at the last ten years of supercomputing. It’s amazing to think how much has changed in that time. Many of our older readers will recall how things were before the official Planetary Supercomputing Facilities at Shanghai, Oak Ridge and Saclay were established. Strange as it may seem now, each country — in fact, each university or company — had its own supercomputer!

Hindsight is easier, of course, but it is interesting to review how this major change in supercomputing came to happen over the last few years.

At the start of the decade, each major university, research centre or company using simulation & modelling had its own HPC resources — they owned it or leased it, operated it, housed it, etc. In addition, some countries (US, UK, Germany, etc.) operated their own national resources for open research. The national facilities were larger than individual institutions could afford, and access to these was usually by a mechanism known as “peer review” — the prospective user would write a short case describing how their science would benefit from using the facility and a group of fellow scientists would judge if the science was worthy. (Note: they rated the science, almost never the quality of the computing implementation!) Very often these national supercomputers were reserved for capability computations, similar to today’s Strategic Simulation category at Shanghai.

The highest profile facilities were those in major research centres (e.g., universities, US DOE labs, etc.) but many commercial organisations had very large facilities too, although these weren’t as well publicised since companies had begun to recognise their use of HPC as a strategic competitive asset. The world’s fastest supercomputers were ranked twice yearly on the TOP500 list. One of the key uses of the TOP500 was for tracking the increasing performance of supercomputing power, usually through a plot showing performance on a vertical logarithmic axis against years on a horizontal axis, and especially two trends on this plot: the reasonably linear growth (on the log scale) of the performance of the fastest machine at any one time; and the smooth linearly (log scale) increasing sum of performance of the 500 systems on the list. The first spark towards the Planetary Supercomputing Facilities came when someone asked “what if we could actually use the compute power of that sum line at once?”

Another factor was the increasing cost of the facilities provision — from computer acquisition (capital) to power (both capital for infrastructure and recurrent for operations) to site management (recurrent and capital, project management, etc.).

Based on this, a number of collaborations started to occur. In Europe, over 20 countries joined together for the two-year PRACE initiative to explore how a pan-European supercomputer service could work in practice. Much was learned from that project and the influences can be seen in the three Planetary Supercomputing Facilities. In the US, ORNL, originally a DOE open science national supercomputing centre, started to host other national facilities (initially for NSF, NOAA and DoD). In fact, ORNL was probably the first planetary supercomputing facility in practice, even though, as we know, Shanghai was the first official Planetary Supercomputing Facility.

People started to realise that operating these large supercomputers was not the interesting part of HPC, and was in fact a very specialist job. As more and more aggregation between national operating sites occurred, and as the scale limited the potential sites (due to power constraints, etc.), it became apparent that there would only be a few sites worldwide capable of fulfilling the growth predicted by the original TOP500 trends.

Then of course came what I call “the public realisation”. Politicians, the public, and Boards finally got it. Supercomputing made a difference. It wasn’t just big rooms of computers costing lots of tax dollars. It was a tool to underpin science, and often to propel it forward. It was a tool for accelerating any properly-formulated computational task, many even with impact on daily life. Better weather predictions. Better design and safety testing of household products. Consumer video/image processing (I remember trying to do early video processing on my own PC!). Speech processing — think how that has revolutionized mobile communications since the early days of typing email messages on BlackBerrys and the like.

And then the critical step — businesses and researchers finally understood that their competitive asset was the capabilities of their modelling software and user expertise — not the hardware itself. Successful businesses rushed to establish a lead over their competitors by investing in their modelling capability — especially robustness (getting trustable predictions/analysis), scalability (being able to process much larger datasets than before) and performance (driving down time to solutions).

As this “software arms race” was put into practice (led by the commercial users) — slowly at first but then with a surge of investment in robust scalable high performance software — money spent on hardware ceased to be the competitive difference. Coupled with the massive increase in demand for HPC resources following the public realisation, and the challenges of managing large facilities, this led to the announcement of the first Planetary Supercomputer Facility in Shanghai. Whilst there was initially preferential access for Chinese domestic users, anyone in the world could use the facility — from consumers to researchers to businesses. After years of trying to exploit commodity components, HPC itself became a commodity service. And this was true HPC, supporting tightly-coupled large simulations, not the earlier attempts at something daftly called “cloud computing,” which only really supported large numbers of very small jobs. The facility shocked the world with its scale — being larger not only than the then top machine on the TOP500, but also larger than the sum of the 500 systems.

The business case for individual ownership of HPC facilities worldwide suddenly became dramatically tougher to justify, with Shanghai providing all classes of computer resources at scale, including the various specialist processing types. Everyone got better HPC, whether capacity or capability, and cheaper HPC than they could ever provide locally. The consumer demand drove innovations in ease-of-use and accounting that previously were only ambitions of seemingly-perpetual academic research.

The international agreements from research funding agencies on behalf of their user communities and from consumer HPC brokers soon followed, confirming the official Planetary Supercomputing Facility status. Within a year, the US had followed suit, securing global agreement for Oak Ridge as the second official Planetary Supercomputing Facility, and of course deployed even more powerful resources than Shanghai.

Soon, the main security concerns had been solved. Network bandwidth that plagued earlier global collaborations went away, as data rarely needed to leave the facilities (or if so, only to transfer between Oak Ridge and Shanghai, which now had massive dedicated bandwidth). Anything that might be done with the data could be done at Oak Ridge or Shanghai — the data never needed to go anywhere else.

With the opening last year of the third and final Planetary Supercomputing Facility at Saclay, the world’s HPC is now ready to sprint into the next decade. We have now left the housing and daily care of the hardware to the specialists. The volume of public and private demand has set the scene for strong HPC provision into the future. We have the three official global providers to ensure consumer choice, with its competitive benefits, but few enough providers to underpin their business cases for the most capable possible HPC infrastructure.

With the pervasiveness of HPC in consumer, business and research arenas, and the long overdue acceptance of the truth that the software capabilities and performance at scale was the competitive asset, “can program HPC at scale” is now more than ever a valuable item for your CV.

For all this astounding progress, I wonder how quaint today’s world will seem when we look back from 2030. After all, just imagine someone reading this in 2009!

2009 Author’s Note: This is not intended to be a prediction nor vision for the next decade, merely some seasonal fun looking at some unlikely extremes of how our community might develop. After all, we’ve had reports saying “it’s the software” for years — so are the chances of us finally doing anything about it more or less likely than the Planetary Supercomputing Facilities?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This