Workshop Focuses on Use of Manycore and Accelerator-based Computing for Advancing Science

By Jon Bashor

December 16, 2009

Online, at conferences and in theory, manycore processors and the use of accelerators such as GPUs and FPGAs are being viewed as the next big revolution in high performance computing (HPC). If they can live up to the potential, these accelerators could someday transform how computational science is performed, providing much more computing power and energy efficiency.

And, in fact, they are already helping to drive significant scientific research projects — not bundled together in large systems, but rather one server at a time. In early December, a group of astronomers, physicists and HPC experts gathered at the SLAC National Accelerator Laboratory near San Francisco to discuss how GPUs and FPGAs are meeting their unique needs. The three-day workshop was co-organized by Lawrence Berkeley National Laboratory, NERSC, SLAC and Stanford’s Kavli Institute for Particle Astrophysics and Cosmology (KIPAC).

The workshop was organized as a part of an ongoing effort to develop infrastructure for enabling physics and astronomy data problems by utilizing these emerging technologies. More than a year ago under the leadership of Horst Simon of LBNL, John Shalf and Hemant Shukla also of LBNL with Rainer Spurzem of the Chinese Academy of Sciences agreed to establish a working collaboration. The workshop was held on a shoestring budget with help from Tom Abel of KIPAC.

“The participating scientific groups started with challenging problems that required parallel performance to meet real-time requirements,” said co-organizer Shukla. “The effective approach to solving such problems as wavefront sensing and real-time radio imaging is to identify the underlying algorithms for speedups and thereby solve common sets of problems.”

The problems shared a common issue — strong real-time constraints. One application is in solving the challenges in real-time control of adaptive optics systems for high-resolution, ground-based astronomy. The second was in radio telescope arrays in remote locations with only limited power. In the second case, the researchers needed the power of a highly parallel system, but a standard cluster computer on a rack would require more electricity than is available. Using GPU acceleration was just the ticket.

“Instead of starting with the technology and seeing if a problem could be solved, as is often the case, they had a problem and found the technology to solve it,” said co-organizer Shalf.

In both cases, the scientists needed a speedup in processor performance and discovered that new technologies such as GPUs and FPGAs provided the enhancements. Their needs were different than those of many other researchers, who look to HPC centers to run their applications on a larger number of processors rather than just running their applications faster.

“The current direction in supercomputing doesn’t address the needs of researchers who need to solve the same-size problem faster, as opposed to solving a bigger problem at the same speed,” Shalf said.

At the workshop, experts from Asia, Europe and North America got together to share information on solving problems in this area, as well as explore and discuss the scope and challenges of harnessing the full potential of these novel architectures for high performance computing. The workshop drew attendees from academia and industry in China, France, Germany, Japan, Taiwan and the United States. Future experiments such as the Large Synoptic Survey Telescope, Murchison Wide-filed Array, the next-generation SETI and the Allen Telescope Array participated in defining the future goals, as did industry leaders including NVIDIA, AMD, Apple, and Sun Microsystems.

Conference advisor Rainer Spurzem of the Chinese Academy of Sciences cited the “eclectic mix” of attendees as adding to the informative exchange of ideas and experience.

“Although the focus was on physics and astronomy applications, the solutions explored by the participants are likely to have broader impact across science and technology disciplines such as healthcare, energy, aerospace and others,” said workshop co-organizer Hemant Shukla of the Berkeley Lab Physics Division. “These emerging new techniques could lead to new systems and software that use both silicon and electrical power much more efficiently. As we move beyond today’s petascale systems, such efficiency is a necessity.”

Other groups are also meeting to explore how these emerging processor technologies can advance a broad range of scientific applications. The workshop at SLAC was held two weeks after the newly-formed Hybrid Multicore Consortium met for the first time at the SC09 (Supercomputing) conference in Portland, Ore. Co-founded by Berkeley Lab, Los Alamos and Oak Ridge national laboratories, the consortium seeks to address the challenge of re-engineering most of today’s scientific applications to take advantage of the resources provided by future hybrid multicore systems.

“While there is considerable excitement about the potential of multicore systems and harnessing their performance for computational science, reaching this goal will require a tremendous effort by both the application experts and software developers,” said LBNL’s Simon, one of three members of the consortium’s executive committee.

Afterward, Wei Ge of the Chinese Academy of Sciences wrote to the organizers, “It was a very informative and fruitful workshop and thank you very much again for your organization and kind invitation to us.”

And some participants were already looking ahead to future collaborations and building resources and communities.

“I have gained quite a bit of information and impressions throughout and I am in the process of transferring all that to our Sun community,” wrote Ferhat Hatay, who works in Strategic Engagements at Sun Microsystems. “We are most interested in contributing to collaboration efforts with the expertise, interest, and support from Sun as well as from our customer and user base.”

—–

See http://www.lbl.gov/cs/html/manycore.html for the workshop and http://computing.ornl.gov/HMC/index.html for the HMC consortium.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Singularity HPC Container Technology Moves Out of the Lab

May 4, 2017

Last week, Singularity – the fast-growing HPC container technology whose development has been spearheaded by Gregory Kurtzer at Lawrence Berkeley National Lab Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This