The Good, the Bad and the Ugly: Reflections on the NSF Supercomputer Center Program

January 4, 2010

In a position paper for community input at NSF’s Future of High Performance Computing Workshop in early December, Calit2 Director Larry Smarr reviewed the successes, failures and continuing challenges of the NSF supercomputing program that he helped create. In 1983, Smarr (then at the University of Illinois at Urbana-Champaign) was the first to propose what would later become known as the NSF Supercomputer Centers program, followed shortly by a proposal from UCSD’s Sid Karin. The two went on to become the founding directors of the first two NSF supercomputer centers — Larry Smarr, of the National Center for Supercomputing Applications (NCSA) at UIUC; and Sid Karin of the San Diego Supercomputer Center (SDSC) at UC San Diego. For the past 10 years, Smarr has been the founding director of Calit2 at UCSD, and in that capacity he has worked very closely with SDSC. Following is the bulk of Larry Smarr’s position paper submitted to the NSF HPC Workshop, which took place at the National Institute for Computational Sciences in Arlington, Virginia.

Larry Smarr: I believe there are some important lessons to be drawn on the institutional and cultural successes and failures of the last 25 years. I offer these reflections for your consideration as you think about how best to organize the NSF HPC program going forward. I have divided my thoughts into three sections: The good, the Bad, and the Ugly. The Good are the accomplishments of the NSF SC centers, many of which were unexpected in 1985. The Bad are the cultural and institutional shortcomings of that program. The Ugly are the missed opportunities, largely caused by the Bad.

The Good

Increased the number of academic supercomputer users. It was estimated that before the 1985 launch of the NSF SC centers there were ~100 academic supercomputer users. After the first five years of the centers program a two orders of magnitude increase, as measured by those that logged onto one or another of the centers machines, was induced in the national academic HPC human resource pool. This vastly increased the scale of academic research using HPC and provided a pool for industry and the labs to hire from.

Stimulated use of HPC simulation in industry. Each of the centers recruited industrial partners and trained them on the use of HPC. NCSA developed an industrial partner program which attracted leading companies from over a dozen categories of the Fortune 500 classification. One notable example is Eli Lilly, which trained over 200 of their staff by total immersion sessions at NCSA, then became the first pharmaceutical company to purchase their own supercomputer (Cray-2), and within a year most major pharmas had followed and acquired HPC resources.

Brought an HPC Garden of Architectures to the community. In a short period of time the NSF centers working jointly with DARPA and NSF acquired almost all major HPC parallel architectures and made them available to the academic HPC community. This drove a rapid evolution of exploring new algorithms for key applications which were most efficient on the new hardware architectures.

Incubated the global Internet and Web. Although the Internet protocols were over a decade old when the NSF centers program began, the decision of the networking section of the Office of Advanced Scientific Computing to only support TCP/IP, led to the NSFnet backbone, buildout of the regionals, and extension to early adopter campuses. The NSF networking division, formed after CISE was created, continue to aggressively upgrade the NSFnet. The vBNS program brought high speed shared Internet to many campuses. These activities led directly to today’s global Internet. NCSA Mosaic, developed only three years after Tim Berners-Lee created the WWW protocols, exponentially grew the nacent Web community. Indeed in 1994 NCSA was the most hit Web site on the planet and as a result we were forced to invent the first parallel Web server. The NCSA Mosaic programmers left UIUC to form Netscape, Microsoft licensed Mosaic to form the basis of Internet Explorer, and Apache moved the Mosaic server code through open source to form the Apache server. Together this led to one of the largest NSF-induced transformations of the global economy in the history of NSF grants.

Drove Scientific Visualization. The need for visualization of the massive datasets generated by the NSF centers drove the development of computer graphics teams at a number of centers. The concept of data-driven scientific visualization quickly swept the academic community, but also had a major impact, largely through SIGGRAPH, on Hollywood and later the gaming community. For instance, Stefen Fangmeier, who was NCSA scientific visualization project manager in 1987, went on to spend over 15 years as a visual effects supervisor at Industrial Light and Magic, working on such films as Terminator 2, Jurassic Park, Dreamcatcher, Perfect Storm, and Master and Commander.

Pioneered Collaboration Technologies. Because HPC applications often involve teams with members spread across multiple institutions, the NSF SC centers were natural locations for the development of collaborative technologies. There was also a need for center consulting staff to collaboratively analyze complex data output and code with remote users. As a result, the NCSA Software Development Group developed one of the first cross-platform (Windows, Mac, Unix) synchronous desktop collaboration software systems, NCSA Collage, focused on collaborative data analysis in 1990. Five years later this was replaced by NCSA Habanero, one of the largest Java applications yet written at the time, which was automatically cross platform. Under the PACI NCSAlliance, ANL led development of the Access Grid, which enabled many remote sites to share real-time video conferencing over the Internet, becoming widely used around the world. In addition, high end experiments in novel collaboration technologies also were explored, such as linking CAVEs or PowerWalls so that avatars represented the location of remote collaborators in a shared data space. This foreshadowed the use of the OptIPuter to link scalable OptIPortals with HD video streams, which is becoming commonplace today.

The Bad

Lack of institutionalization of the centers. In spite of constant requests from the centers, NSF never institutionalized the centers program as it had NCAR, NRAO, NOAO, etc. Those centers are, respectively, where the nation computes atmospheric sciences, observes with radio waves, and observes at optical wavelengths. The SC centers should be the sites where the academic community computes and where the staff support for things computational are housed. That is, select a few sites and give them the same multi-decadal guarantee of existence, with periodic reviews to maintain quality and user responsiveness. This would reduce a great deal of the endless rounds of existential worry and report writing which characterized the centers, at least during my 15 years as a director.

NSF induced a competitive culture between centers. A corollary of the above point is that the centers, by NSF design, were forced into a secretive and competitive posture relative to one another. Because one never knew when the next competition would come down from NSF, one hoarded any possible advantage to use in that next round. If the centers had been institutionalized they could relax and afford to be open and sharing. As one example of the disincentive to collaborate, it took me several years to convince the other centers to come together to form a joint national peer review board, because it undercut the ability of centers to recruit application “stars” and claim exclusivity with them. I believe the country would have seen the emergence of a national cyberinfrastructure during the PACI era if the centers had been institutionalized and incentives had been put in place for sharing and joint projects.

Narrowing Rather than Broadening Mission. One of the reasons that so many of the Good things happened was the flexibility that was inherently part of the original SC centers mandate. Yes, first and foremost the mission was centered on acquiring, installing, operating, and user consulting for HPC resources, but in addition there was funding opportunity to hire application domain experts, software tools developers, computer graphics and digital arts wizards, etc. In the PACI era this was broadened even more by the partnering with many other universities, national labs, and industrial partners. However, it seems to me that in the last decade the NSF has drastically narrowed the scope of the SC centers until finally the centers seem to be being dealt with as if they were contractors for installing and operating machines only. This had naturally led to a systematic “brain drain” away from the centers and a major lowering of their innovation opportunity space. I think it highly unlikely today that many of the successes of the first decade could occur in the centers as they are funded and reviewed currently.

The Ugly

Lack of balanced user-to-HPC architecture. From the beginning of the NSF centers program, a basic architectural concept was building a balanced end-to-end system connecting the end user with the HPC resource. Essentially, this was what drove the NSFnet build-out and the strong adoption of NCSA Telnet, allowing end users with Macs or PCs the ability to open up multiple windows on their PCs, including the supercomputer and mass storage systems. Similarly, during the first five years of the PACI, both NPACI and the Alliance spent a lot of their software development and infrastructure developments on connecting the end-user to the HPC resources. But it seems that during the TeraGrid era, the end-users only have access to the TG resources over the shared Internet, with no local facilities for compute, storage, and visualization that scale up in proportion with the capability of the TG resources. This sets up an exponentially growing data isolation of the end users as the HPC resources get exponentially faster (thus exponentially increasing the size of data sets the end-user needs access to), while the shared Internet throughput grows slowly if at all.

NSF drops support for national networking. After 15 years of leadership in increasing Internet backbone speed and connectivity to campuses, NSF has essentially removed itself from supporting the needed growth in capability of the Internet for the increasing data-intensive requirements of the end-users of the TG resources, with the notable exception of the IRNC. This is in spite of the creation and growth of the National LambdaRail and more recently the Internet2 Dynamic Circuits, both of which provide clear channel IP fiber optic connections at 10,000 Mbps. Although the NSF did support several 10G connections BETWEEN the TG sites, the NSF has essentially withdrawn from the national backbone, regional, and local support for dedicated or on-demand large data pipes to the end-users of the TG. Imagine that NSF had only supported the Internet links between the five centers in the late 1980s and hadn’t supported the build-out of the regionals and the access to the early adopting campuses!

No systemic cyberinfrastructure plan with centers having key role. In spite of 15 years of development of components of CI, there is still no NSF-wide layered CI defined and being used broadly. MREFCs are individually defining and building their own CI (NEES, OOI, NEON), as well as Division-level grants (e.g., iPLANT). I have always believed that the NSF SC centers, as the original data-intensive generators would be in the ideal position to come together with the CS and applications communities (the intersection they have always worked at) to define a national CI system and support it for the major NSF opportunities. However, to have done this would have required The Bad not to have existed. Namely, defining and supporting an NSF-wide national CI would be natural if the SC centers had institutional stability and longevity, a collaborative rather than competitive culture, and a broadening rather than narrowing mandate. With the formation of an Office of CI, there is a chance to try and change all this, but without a robust and flexible set of NSF SC centers, there are no obvious sites to house the software engineers and consultants to support a national NSF CI program.

My hope is that these remarks can help inform the discussions of the NSF HPC Workshop. I am happy to engage with the process in the future if it would be helpful.

—–

Reprinted with permission from Calit2 and Larry Smarr.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire