Convey Computer President’s Letter

By Nicole Hemsoth

January 19, 2010

The new year is a time for reflection, especially after the turbulent economic environment that marked 2009. In that spirit, HPCwire invited the HPC vendor community to post a new year’s message to our readers. First in the series is Bruce Toal, CEO, president and co-founder for Convey Computer.

Bruce Toal, CEO, President, Co-Founder Convey ComputerDear HPCwire Readers, Customers, and Colleagues,

For a new computer company, 2009 was a year of proving that technical innovation could thrive in the crushingly competitive high-performance computing marketplace. It was our year to acquire more investment capital, more customers, and release the production units of our hybrid-core computer into the marketplace.

Happily, 2009 was a remarkable year for Convey Computer Corporation. As pioneers of hybrid-core computing – a technology designed to help high-performance computers run faster while significantly reducing the energy they use – we closed $24.15 million in Series B financing in July. The round of funding was led by new investor, Braemar Energy Ventures. Series A investors CenterPoint Ventures, Intel Capital, InterWest Partners, Rho Ventures, and Xilinx® also participated. Convey was founded in 2006 and introduced its product, the Convey HC-1™, in November 2008. To date, Convey has received $39.25 million in venture funding.

Our investors were impressed that the Convey team met its milestones, including recently shipping beta and production units to customers who are using the systems in diverse applications such as bioinformatics, data mining, government, and oil and gas. In 2009, Convey announced two new board members with extensive technology experience: Jiong Ma, Ph.D., of Braemar Energy Ventures, and Joshua Ruch of Rho Ventures.

The new round of investment capital meant that we could begin to expand our employee infrastructure. We now have a talented and knowledgeable sales force with proven expertise in the high-performance computing. At the same time, we are building our customer support organization and other company functions to deal with scaling production. Convey also expanded internationally in 2009 when we signed a master reseller agreement with HMK Supercomputing GmbH, whichwill represent Convey Computer in Germany, Switzerland, and Austria.

2010: The Focus Sharpens on Green HPC

“Hybrid-core” is a new market space identified by Convey. A hybrid-core computer improves application performance by combining an x86 core with hardware that implements application-specific instructions. Hybrid-core computing was developed to address what we saw as a perfect storm of technology trends, including:

  1. The need to continue extracting application performance from hardware rather than transferring the burden to programmers
  2. The flattening — or even the decline — in processor clock rates
  3. The need to reduce the cost and the use of energy in our data centers

The energy issue is paramount. Convey’s hybrid-core technology helps customers reduce energy costs associated with high-performance computing because we use FPGAs to power our compute engines. To illustrate: a modern data center today can cost up to $200 million to build, with power and cooling costs making up half of the annual operating costs. Every watt required to power a server nominally requires another watt to cool it. On key HPC workloads, Convey’s HC-1 reduces the number of servers required dramatically. One rack of Convey servers can replace multiple racks of traditional application servers, which means that customers can realize dramatically lower power and cooling costs. One of our customers, for example, realized a 91% reduction in their power and cooling costs. And they’re pretty happy about that!

Reducing power without sacrificing performance is one of the most important issues facing the HPC community over the coming years. The reason Convey will continue to focus on “Green HPC” is simple: data center economics have changed. Energy costs are consuming half the IT operating budget and the cost of floor space is limiting. As we’ve heard from Dr. John Shalf, head of Berkeley Lab’s Science-Driven Systems Architecture team, “Energy efficiency has become a first-order design constraint for future systems. We really don’t see the current path of scaling up conventional hardware as sustainable either in terms of the initial hardware cost or the price of powering such systems over its lifetime.

2010: Where’s the Software?

The same issues that have been driving high-performance computing for the last couple of decades – more performance/less price – will continue into 2010 and beyond. In our view, the performance issue is one part hardware and two parts software.

Our motto at Convey is that the system which is easier to program wins. Convey is an application-specific, low power node. What continues to challenge HPC is that the cost of a programmer for one year is MORE than the cost of acquiring a teraflop (peak performance) system. This is one reason we engineered the Convey system with the hardware and software architecture as an extension to the x86 ecosystem. When presented with a familiar environment, programmers benefit from 100 percent productivity and portability.

Many applications have code that was written long ago – in some case 20 years ago! Many of these applications still have “serial math” as their underpinning. And, before we forget, the universe of programmers capable of writing parallel programs does not seem to have grown any over the years. Now, HPC applications are moving into a different application space called data-intensive computing. The computer centers at Google and Microsoft are substantially larger than what was once thought of as a “classic” HPC center. For example, Microsoft’s Chicago datacenter is 24,000 square meters, houses some one million servers, and is powered by two 300MW substations!

The industry needs to focus more on software productivity, just as we are doing at Convey. Admittedly, it takes time and money to redefine. Meanwhile, extracting performance from our portfolio of HPC applications is easiest for the programmer if the compiler does the work or, at minimum, provides the hints that point the programmer in the right direction. Plus, having a full suite of development tools available to help in the debug and optimization phases of development helps a lot. We believe this is another area where our cache coherent, virtual memory approach really shines – in being able to step through all phases of the program, whether executing on the x86 or on the Convey coprocessor in a single process space.

2010: New Architectures Bring New Opportunities for Discovery in HPC

As the future continues to bring innovation to the HPC marketplace, we will also continue to innovate with hybrid-core technologies.From our perspective, computer architectures will continue to evolve with a greater emphasis on application flexibility.

Fundamental to our mission is to design and develop personalities with instructions that can replace thousands of iterations of standard x86 instruction for a particular application space and with full ANSI standard FORTRAN, C, and C++compiler support.Our technology stimulates the imaginative talents of computer architects and algorithm experts. It is no longer an exercise in using a standard instruction set for optimal performance, but a creative challenge to define a set of instructions that are optimized for a set of applications. The innovation continues as computing experts can “teach” a compiler how to recognize certain program constructs and then invoke these instructions.

We saw this first-hand as we worked in 2009 to develop the new Financial Analytics Personality (FAP). One of the major problems facing developers of financial applications is that the instruction set of commodity processors doesn’t map well to many financial algorithms. Even a simple intrinsic function can take hundreds of instructions and, in many of these applications, that intrinsic function must be executed millions of times.

The Convey solution hard-wires these functions into the HC-1system hardware, which can be many times more efficient than a sequence of commodity instructions. The ANSI standard Convey compilers automatically recognize constructs in the application that can take advantage of the hardware speed-ups. In effect, the developer doesn’t need to know the intricacies of the hardware, yet they reap the performance benefits.

Application-specific instructions are not practical to implement within a microprocessor unless the market that can take advantage of them is sizable, which means large enough to cover the three or five year development costs. Potential application-specific instructions must then compete for processor die space with other uses for transistors (more cache, more cores, etc.). Using a reconfigurable fabric (FPGAs) reduces the design cycle to months instead of years and avoids the huge costs to produce a custom device. And reconfigurable fabric can be used for many application areas, each optimized for that specific mission without competing for device real estate against other uses or areas.

This is one reason why we believe that FPGAs – with the technology’s inherent application flexibility and energy efficiency – represent the best solution for delivering more raw performance, nimble application development, and energy-efficient computing.

In closing, here’s wishing all of us a very exciting 2010.

Best Regards,

Bruce Toal
CEO, President, Co-Founder
Convey Computer Corporation
Convey Computer

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This