Convey Computer President’s Letter

By Nicole Hemsoth

January 19, 2010

The new year is a time for reflection, especially after the turbulent economic environment that marked 2009. In that spirit, HPCwire invited the HPC vendor community to post a new year’s message to our readers. First in the series is Bruce Toal, CEO, president and co-founder for Convey Computer.

Bruce Toal, CEO, President, Co-Founder Convey ComputerDear HPCwire Readers, Customers, and Colleagues,

For a new computer company, 2009 was a year of proving that technical innovation could thrive in the crushingly competitive high-performance computing marketplace. It was our year to acquire more investment capital, more customers, and release the production units of our hybrid-core computer into the marketplace.

Happily, 2009 was a remarkable year for Convey Computer Corporation. As pioneers of hybrid-core computing – a technology designed to help high-performance computers run faster while significantly reducing the energy they use – we closed $24.15 million in Series B financing in July. The round of funding was led by new investor, Braemar Energy Ventures. Series A investors CenterPoint Ventures, Intel Capital, InterWest Partners, Rho Ventures, and Xilinx® also participated. Convey was founded in 2006 and introduced its product, the Convey HC-1™, in November 2008. To date, Convey has received $39.25 million in venture funding.

Our investors were impressed that the Convey team met its milestones, including recently shipping beta and production units to customers who are using the systems in diverse applications such as bioinformatics, data mining, government, and oil and gas. In 2009, Convey announced two new board members with extensive technology experience: Jiong Ma, Ph.D., of Braemar Energy Ventures, and Joshua Ruch of Rho Ventures.

The new round of investment capital meant that we could begin to expand our employee infrastructure. We now have a talented and knowledgeable sales force with proven expertise in the high-performance computing. At the same time, we are building our customer support organization and other company functions to deal with scaling production. Convey also expanded internationally in 2009 when we signed a master reseller agreement with HMK Supercomputing GmbH, whichwill represent Convey Computer in Germany, Switzerland, and Austria.

2010: The Focus Sharpens on Green HPC

“Hybrid-core” is a new market space identified by Convey. A hybrid-core computer improves application performance by combining an x86 core with hardware that implements application-specific instructions. Hybrid-core computing was developed to address what we saw as a perfect storm of technology trends, including:

  1. The need to continue extracting application performance from hardware rather than transferring the burden to programmers
  2. The flattening — or even the decline — in processor clock rates
  3. The need to reduce the cost and the use of energy in our data centers

The energy issue is paramount. Convey’s hybrid-core technology helps customers reduce energy costs associated with high-performance computing because we use FPGAs to power our compute engines. To illustrate: a modern data center today can cost up to $200 million to build, with power and cooling costs making up half of the annual operating costs. Every watt required to power a server nominally requires another watt to cool it. On key HPC workloads, Convey’s HC-1 reduces the number of servers required dramatically. One rack of Convey servers can replace multiple racks of traditional application servers, which means that customers can realize dramatically lower power and cooling costs. One of our customers, for example, realized a 91% reduction in their power and cooling costs. And they’re pretty happy about that!

Reducing power without sacrificing performance is one of the most important issues facing the HPC community over the coming years. The reason Convey will continue to focus on “Green HPC” is simple: data center economics have changed. Energy costs are consuming half the IT operating budget and the cost of floor space is limiting. As we’ve heard from Dr. John Shalf, head of Berkeley Lab’s Science-Driven Systems Architecture team, “Energy efficiency has become a first-order design constraint for future systems. We really don’t see the current path of scaling up conventional hardware as sustainable either in terms of the initial hardware cost or the price of powering such systems over its lifetime.

2010: Where’s the Software?

The same issues that have been driving high-performance computing for the last couple of decades – more performance/less price – will continue into 2010 and beyond. In our view, the performance issue is one part hardware and two parts software.

Our motto at Convey is that the system which is easier to program wins. Convey is an application-specific, low power node. What continues to challenge HPC is that the cost of a programmer for one year is MORE than the cost of acquiring a teraflop (peak performance) system. This is one reason we engineered the Convey system with the hardware and software architecture as an extension to the x86 ecosystem. When presented with a familiar environment, programmers benefit from 100 percent productivity and portability.

Many applications have code that was written long ago – in some case 20 years ago! Many of these applications still have “serial math” as their underpinning. And, before we forget, the universe of programmers capable of writing parallel programs does not seem to have grown any over the years. Now, HPC applications are moving into a different application space called data-intensive computing. The computer centers at Google and Microsoft are substantially larger than what was once thought of as a “classic” HPC center. For example, Microsoft’s Chicago datacenter is 24,000 square meters, houses some one million servers, and is powered by two 300MW substations!

The industry needs to focus more on software productivity, just as we are doing at Convey. Admittedly, it takes time and money to redefine. Meanwhile, extracting performance from our portfolio of HPC applications is easiest for the programmer if the compiler does the work or, at minimum, provides the hints that point the programmer in the right direction. Plus, having a full suite of development tools available to help in the debug and optimization phases of development helps a lot. We believe this is another area where our cache coherent, virtual memory approach really shines – in being able to step through all phases of the program, whether executing on the x86 or on the Convey coprocessor in a single process space.

2010: New Architectures Bring New Opportunities for Discovery in HPC

As the future continues to bring innovation to the HPC marketplace, we will also continue to innovate with hybrid-core technologies.From our perspective, computer architectures will continue to evolve with a greater emphasis on application flexibility.

Fundamental to our mission is to design and develop personalities with instructions that can replace thousands of iterations of standard x86 instruction for a particular application space and with full ANSI standard FORTRAN, C, and C++compiler support.Our technology stimulates the imaginative talents of computer architects and algorithm experts. It is no longer an exercise in using a standard instruction set for optimal performance, but a creative challenge to define a set of instructions that are optimized for a set of applications. The innovation continues as computing experts can “teach” a compiler how to recognize certain program constructs and then invoke these instructions.

We saw this first-hand as we worked in 2009 to develop the new Financial Analytics Personality (FAP). One of the major problems facing developers of financial applications is that the instruction set of commodity processors doesn’t map well to many financial algorithms. Even a simple intrinsic function can take hundreds of instructions and, in many of these applications, that intrinsic function must be executed millions of times.

The Convey solution hard-wires these functions into the HC-1system hardware, which can be many times more efficient than a sequence of commodity instructions. The ANSI standard Convey compilers automatically recognize constructs in the application that can take advantage of the hardware speed-ups. In effect, the developer doesn’t need to know the intricacies of the hardware, yet they reap the performance benefits.

Application-specific instructions are not practical to implement within a microprocessor unless the market that can take advantage of them is sizable, which means large enough to cover the three or five year development costs. Potential application-specific instructions must then compete for processor die space with other uses for transistors (more cache, more cores, etc.). Using a reconfigurable fabric (FPGAs) reduces the design cycle to months instead of years and avoids the huge costs to produce a custom device. And reconfigurable fabric can be used for many application areas, each optimized for that specific mission without competing for device real estate against other uses or areas.

This is one reason why we believe that FPGAs – with the technology’s inherent application flexibility and energy efficiency – represent the best solution for delivering more raw performance, nimble application development, and energy-efficient computing.

In closing, here’s wishing all of us a very exciting 2010.

Best Regards,

Bruce Toal
CEO, President, Co-Founder
Convey Computer Corporation
Convey Computer

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This