Convey Computer President’s Letter

By Nicole Hemsoth

January 19, 2010

The new year is a time for reflection, especially after the turbulent economic environment that marked 2009. In that spirit, HPCwire invited the HPC vendor community to post a new year’s message to our readers. First in the series is Bruce Toal, CEO, president and co-founder for Convey Computer.

Bruce Toal, CEO, President, Co-Founder Convey ComputerDear HPCwire Readers, Customers, and Colleagues,

For a new computer company, 2009 was a year of proving that technical innovation could thrive in the crushingly competitive high-performance computing marketplace. It was our year to acquire more investment capital, more customers, and release the production units of our hybrid-core computer into the marketplace.

Happily, 2009 was a remarkable year for Convey Computer Corporation. As pioneers of hybrid-core computing – a technology designed to help high-performance computers run faster while significantly reducing the energy they use – we closed $24.15 million in Series B financing in July. The round of funding was led by new investor, Braemar Energy Ventures. Series A investors CenterPoint Ventures, Intel Capital, InterWest Partners, Rho Ventures, and Xilinx® also participated. Convey was founded in 2006 and introduced its product, the Convey HC-1™, in November 2008. To date, Convey has received $39.25 million in venture funding.

Our investors were impressed that the Convey team met its milestones, including recently shipping beta and production units to customers who are using the systems in diverse applications such as bioinformatics, data mining, government, and oil and gas. In 2009, Convey announced two new board members with extensive technology experience: Jiong Ma, Ph.D., of Braemar Energy Ventures, and Joshua Ruch of Rho Ventures.

The new round of investment capital meant that we could begin to expand our employee infrastructure. We now have a talented and knowledgeable sales force with proven expertise in the high-performance computing. At the same time, we are building our customer support organization and other company functions to deal with scaling production. Convey also expanded internationally in 2009 when we signed a master reseller agreement with HMK Supercomputing GmbH, whichwill represent Convey Computer in Germany, Switzerland, and Austria.

2010: The Focus Sharpens on Green HPC

“Hybrid-core” is a new market space identified by Convey. A hybrid-core computer improves application performance by combining an x86 core with hardware that implements application-specific instructions. Hybrid-core computing was developed to address what we saw as a perfect storm of technology trends, including:

  1. The need to continue extracting application performance from hardware rather than transferring the burden to programmers
  2. The flattening — or even the decline — in processor clock rates
  3. The need to reduce the cost and the use of energy in our data centers

The energy issue is paramount. Convey’s hybrid-core technology helps customers reduce energy costs associated with high-performance computing because we use FPGAs to power our compute engines. To illustrate: a modern data center today can cost up to $200 million to build, with power and cooling costs making up half of the annual operating costs. Every watt required to power a server nominally requires another watt to cool it. On key HPC workloads, Convey’s HC-1 reduces the number of servers required dramatically. One rack of Convey servers can replace multiple racks of traditional application servers, which means that customers can realize dramatically lower power and cooling costs. One of our customers, for example, realized a 91% reduction in their power and cooling costs. And they’re pretty happy about that!

Reducing power without sacrificing performance is one of the most important issues facing the HPC community over the coming years. The reason Convey will continue to focus on “Green HPC” is simple: data center economics have changed. Energy costs are consuming half the IT operating budget and the cost of floor space is limiting. As we’ve heard from Dr. John Shalf, head of Berkeley Lab’s Science-Driven Systems Architecture team, “Energy efficiency has become a first-order design constraint for future systems. We really don’t see the current path of scaling up conventional hardware as sustainable either in terms of the initial hardware cost or the price of powering such systems over its lifetime.

2010: Where’s the Software?

The same issues that have been driving high-performance computing for the last couple of decades – more performance/less price – will continue into 2010 and beyond. In our view, the performance issue is one part hardware and two parts software.

Our motto at Convey is that the system which is easier to program wins. Convey is an application-specific, low power node. What continues to challenge HPC is that the cost of a programmer for one year is MORE than the cost of acquiring a teraflop (peak performance) system. This is one reason we engineered the Convey system with the hardware and software architecture as an extension to the x86 ecosystem. When presented with a familiar environment, programmers benefit from 100 percent productivity and portability.

Many applications have code that was written long ago – in some case 20 years ago! Many of these applications still have “serial math” as their underpinning. And, before we forget, the universe of programmers capable of writing parallel programs does not seem to have grown any over the years. Now, HPC applications are moving into a different application space called data-intensive computing. The computer centers at Google and Microsoft are substantially larger than what was once thought of as a “classic” HPC center. For example, Microsoft’s Chicago datacenter is 24,000 square meters, houses some one million servers, and is powered by two 300MW substations!

The industry needs to focus more on software productivity, just as we are doing at Convey. Admittedly, it takes time and money to redefine. Meanwhile, extracting performance from our portfolio of HPC applications is easiest for the programmer if the compiler does the work or, at minimum, provides the hints that point the programmer in the right direction. Plus, having a full suite of development tools available to help in the debug and optimization phases of development helps a lot. We believe this is another area where our cache coherent, virtual memory approach really shines – in being able to step through all phases of the program, whether executing on the x86 or on the Convey coprocessor in a single process space.

2010: New Architectures Bring New Opportunities for Discovery in HPC

As the future continues to bring innovation to the HPC marketplace, we will also continue to innovate with hybrid-core technologies.From our perspective, computer architectures will continue to evolve with a greater emphasis on application flexibility.

Fundamental to our mission is to design and develop personalities with instructions that can replace thousands of iterations of standard x86 instruction for a particular application space and with full ANSI standard FORTRAN, C, and C++compiler support.Our technology stimulates the imaginative talents of computer architects and algorithm experts. It is no longer an exercise in using a standard instruction set for optimal performance, but a creative challenge to define a set of instructions that are optimized for a set of applications. The innovation continues as computing experts can “teach” a compiler how to recognize certain program constructs and then invoke these instructions.

We saw this first-hand as we worked in 2009 to develop the new Financial Analytics Personality (FAP). One of the major problems facing developers of financial applications is that the instruction set of commodity processors doesn’t map well to many financial algorithms. Even a simple intrinsic function can take hundreds of instructions and, in many of these applications, that intrinsic function must be executed millions of times.

The Convey solution hard-wires these functions into the HC-1system hardware, which can be many times more efficient than a sequence of commodity instructions. The ANSI standard Convey compilers automatically recognize constructs in the application that can take advantage of the hardware speed-ups. In effect, the developer doesn’t need to know the intricacies of the hardware, yet they reap the performance benefits.

Application-specific instructions are not practical to implement within a microprocessor unless the market that can take advantage of them is sizable, which means large enough to cover the three or five year development costs. Potential application-specific instructions must then compete for processor die space with other uses for transistors (more cache, more cores, etc.). Using a reconfigurable fabric (FPGAs) reduces the design cycle to months instead of years and avoids the huge costs to produce a custom device. And reconfigurable fabric can be used for many application areas, each optimized for that specific mission without competing for device real estate against other uses or areas.

This is one reason why we believe that FPGAs – with the technology’s inherent application flexibility and energy efficiency – represent the best solution for delivering more raw performance, nimble application development, and energy-efficient computing.

In closing, here’s wishing all of us a very exciting 2010.

Best Regards,

Bruce Toal
CEO, President, Co-Founder
Convey Computer Corporation
Convey Computer

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate scientists the ability to use machine learning to identify e Read more…

By Rob Farber

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This