Cloud Computing Will Usher in a New Era of Science Discovery

By Gilad Shainer, Brian Sparks, Scot Schultz, Eric Lantz, William Liu, Tong Liu, and Goldi Misra

January 26, 2010

Computational science is the field of study concerned with constructing mathematical models and numerical techniques that represent scientific, social scientific or engineering problems and employing these models on computers, or clusters of computers to analyze, explore or solve these models. Numerical simulation enables the study of complex phenomena that would be too expensive or dangerous to study by direct experimentation. The quest for ever-higher levels of detail and realism in such simulations requires enormous computational capacity, and has provided the impetus for breakthroughs in computer algorithms and architectures.

Due to these advances, computational scientists and engineers can now solve large-scale problems that were once thought intractable by creating the related models and simulate them via high performance compute clusters or supercomputers. Simulation is being used as an integral part of the manufacturing, design and decision-making processes, and as a fundamental tool for scientific research. Problems where high performance simulation play a pivotal role include for example weather and climate prediction, nuclear and energy research, simulation and design of vehicles and aircrafts, electronic design automation, astrophysics, quantum mechanics, biology, computational chemistry and more.

Computation is commonly considered the third mode of science, where the previous modes or paradigms were experimentation/observation and theory. In the past, science was performed by observing evidence of natural or social phenomena, recording measurable data related to the observations, and analyzing this information to construct theoretical explanations of how things work. With the introduction of high performance supercomputers, the methods of scientific research could include mathematical models and simulation of phenomenon that are too expensive or beyond our experiment’s reach. With the advent of cloud computing, a fourth mode of science is on the horizon.

The concept of computing “in a cloud” is typically referred as a hosted computational environment (could be local or remote) that can provide elastic compute and storage services for users per demand. Therefore the current usage model of cloud environments is aimed at computational science. But future clouds can serve as environments for distributed science to allow researchers and engineers to share their data with their peers around the globe and allow expensive achieved results to be utilized for more research projects and scientific discoveries.

To allow the shift to the fourth mode of “science discovery,” cloud environments will need not only to provide capability to share the data created by the computational science and the various observations results, but also to be able to provide cost-effective high performance computing capabilities, similar to that of today’s leading supercomputers, in order to be able to rapidly and effectively analyze the data flood. Moreover, an important criteria of clouds need to be fast provisioning of the cloud resources, both compute and storage, in order to service many users, many different analysis and be able to suspend tasks and bring them back to life in a fast manner. Reliability is another concern, and clouds need to be able to be “self healing” clouds where failing components can be replaced by spares or on-demand resources to guarantee constant access and resource availability.

The use of grids for scientific computing has become successful in the fast years and many international projects led to the establishment of worldwide infrastructures available for computational science. The Open Science Grid provides support for data-intensive research for different disciplines such as biology, chemistry, particle physics, and geographic information systems. Enabling Grid for ESciencE (EGEE) is an initiative funded by the European Commission that connects more than 91 institutions in Europe, Asia, and United States of America, to construct the largest multi-science computing grid infrastructure of the world. TeraGrid is an NSF funded project that provides scientists with a large computing infrastructure built on top of resources at nine resource provider partner sites. It is used by 4000 users at over 200 universities that advance research in molecular bioscience, ocean science, earth science, mathematics, neuroscience, design and manufacturing, and other disciplines. While grids can provide a good infrastructure for shared science and data analysis, several issues make the grids problematic to lead the fourth mode of science — limited software flexibility, applications typically need to be pre-packaged, non elasticity and lack of virtualization. Those missing items can be delivered through cloud computing.

Cloud computing addresses many of the aforementioned problems by means of virtualization technologies, which provide the ability to scale up and down the computing infrastructure according to given requirements. By using cloud-based technologies scientists can have easy access to large distributed infrastructures and completely customize their execution environment. Furthermore, effective provisioning can support many more activities and suspend or bring to life activities in an instant. This makes the spectrum of options available to scientists wide enough to cover any specific need for their research.

In many scientific fields of studies, the instruments are extremely expensive, and as such, the data must be shared. With this data explosion and as high performance systems become a commodity infrastructure, the pressure to share scientific data is increasing. That resonates well with the emerging cloud computing trend. While for the moment cloud computing appears to be a cost effective alternative for IT spending, or the shift of enterprise IT centers from capital expense to operational expense, research institutes have started exploring how cloud computing can create the desired compute centralization and an environment for researchers to chare and crunch the flood of data. One example is the new system at the National Energy Research Scientific Computing Center (US), named “Magellan.” While Magellan’s initial target is to provide a tool for computational science in a cloud environment, it can be easily modified to become a center for data processing accessed by many researchers and scientists

Until recently, high performance computing has not been a good candidate for cloud computing due to its requirement for tight integration between server nodes via low-latency interconnects. The performance overhead associated with host virtualization, a prerequisite technology for migrating local applications to the cloud, quickly erodes application scalability and efficiency in an HPC context. The new virtualization solutions such as KVM and XEN aim to solve the performance issue by allowing native performance capabilities from the virtual machines by reducing the virtualization management overhead and by allowing direct access from the virtual machines to the network.

High-speed networking is a critical requirement for affordable high performance computing, as clusters of servers and storage need to be able to communicate as fast as possible between them. A vast majority of the world top 100 supercomputers are using the high-speed InfiniBand networking due to this reason, and the interconnect allows those systems to reach to more than 90 percent efficiency, a critical element for effective for high performance computing in any infrastructure, including clouds. National Energy Research Scientific Computing Center (NERSC, US) “Magellan” system is using InfiniBand as the interconnect to provide the fastest connection between servers and storage in order to allow the maximum gain from the system, highest efficiency and an infrastructure that will be able to analyze data in real time.

Power consumption is another important issue for high performance clouds. As the HPC clouds become bigger, affordability of science discovery will be determined by the ability so the save the costs of the power and cooling. Power management, which is implemented within the CPUs, the interconnect and the system management and scheduling will need to be integrated as a comprehensive solution. Non utilized sections of the clouds need to be powered off or moved into power saving states and the scheduling mechanism will need to incorporate topology awareness.

The HPC Advisory Council HPC|Cloud group is working to investigate the creation and usage models of clouds in HPC. Past activities on smart scheduling mechanisms have been published on the council’s Web site, and future results will include the usage of KVM and XEN, manycore CPUs (such as AMD’s Magny-Cours which includes 12 cores in a single CPU) and cloud management software (such as Platform ISF) will be published throughout 2010. The HPC Advisory Council will continue to investigate the emerging technologies and aspects that will lead us into the fourth mode of science.

Acknowledgments

The authors would like to thank Cydney Stevens for her vision and guidance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This