Cloud Computing Will Usher in a New Era of Science Discovery

By Gilad Shainer, Brian Sparks, Scot Schultz, Eric Lantz, William Liu, Tong Liu, and Goldi Misra

January 26, 2010

Computational science is the field of study concerned with constructing mathematical models and numerical techniques that represent scientific, social scientific or engineering problems and employing these models on computers, or clusters of computers to analyze, explore or solve these models. Numerical simulation enables the study of complex phenomena that would be too expensive or dangerous to study by direct experimentation. The quest for ever-higher levels of detail and realism in such simulations requires enormous computational capacity, and has provided the impetus for breakthroughs in computer algorithms and architectures.

Due to these advances, computational scientists and engineers can now solve large-scale problems that were once thought intractable by creating the related models and simulate them via high performance compute clusters or supercomputers. Simulation is being used as an integral part of the manufacturing, design and decision-making processes, and as a fundamental tool for scientific research. Problems where high performance simulation play a pivotal role include for example weather and climate prediction, nuclear and energy research, simulation and design of vehicles and aircrafts, electronic design automation, astrophysics, quantum mechanics, biology, computational chemistry and more.

Computation is commonly considered the third mode of science, where the previous modes or paradigms were experimentation/observation and theory. In the past, science was performed by observing evidence of natural or social phenomena, recording measurable data related to the observations, and analyzing this information to construct theoretical explanations of how things work. With the introduction of high performance supercomputers, the methods of scientific research could include mathematical models and simulation of phenomenon that are too expensive or beyond our experiment’s reach. With the advent of cloud computing, a fourth mode of science is on the horizon.

The concept of computing “in a cloud” is typically referred as a hosted computational environment (could be local or remote) that can provide elastic compute and storage services for users per demand. Therefore the current usage model of cloud environments is aimed at computational science. But future clouds can serve as environments for distributed science to allow researchers and engineers to share their data with their peers around the globe and allow expensive achieved results to be utilized for more research projects and scientific discoveries.

To allow the shift to the fourth mode of “science discovery,” cloud environments will need not only to provide capability to share the data created by the computational science and the various observations results, but also to be able to provide cost-effective high performance computing capabilities, similar to that of today’s leading supercomputers, in order to be able to rapidly and effectively analyze the data flood. Moreover, an important criteria of clouds need to be fast provisioning of the cloud resources, both compute and storage, in order to service many users, many different analysis and be able to suspend tasks and bring them back to life in a fast manner. Reliability is another concern, and clouds need to be able to be “self healing” clouds where failing components can be replaced by spares or on-demand resources to guarantee constant access and resource availability.

The use of grids for scientific computing has become successful in the fast years and many international projects led to the establishment of worldwide infrastructures available for computational science. The Open Science Grid provides support for data-intensive research for different disciplines such as biology, chemistry, particle physics, and geographic information systems. Enabling Grid for ESciencE (EGEE) is an initiative funded by the European Commission that connects more than 91 institutions in Europe, Asia, and United States of America, to construct the largest multi-science computing grid infrastructure of the world. TeraGrid is an NSF funded project that provides scientists with a large computing infrastructure built on top of resources at nine resource provider partner sites. It is used by 4000 users at over 200 universities that advance research in molecular bioscience, ocean science, earth science, mathematics, neuroscience, design and manufacturing, and other disciplines. While grids can provide a good infrastructure for shared science and data analysis, several issues make the grids problematic to lead the fourth mode of science — limited software flexibility, applications typically need to be pre-packaged, non elasticity and lack of virtualization. Those missing items can be delivered through cloud computing.

Cloud computing addresses many of the aforementioned problems by means of virtualization technologies, which provide the ability to scale up and down the computing infrastructure according to given requirements. By using cloud-based technologies scientists can have easy access to large distributed infrastructures and completely customize their execution environment. Furthermore, effective provisioning can support many more activities and suspend or bring to life activities in an instant. This makes the spectrum of options available to scientists wide enough to cover any specific need for their research.

In many scientific fields of studies, the instruments are extremely expensive, and as such, the data must be shared. With this data explosion and as high performance systems become a commodity infrastructure, the pressure to share scientific data is increasing. That resonates well with the emerging cloud computing trend. While for the moment cloud computing appears to be a cost effective alternative for IT spending, or the shift of enterprise IT centers from capital expense to operational expense, research institutes have started exploring how cloud computing can create the desired compute centralization and an environment for researchers to chare and crunch the flood of data. One example is the new system at the National Energy Research Scientific Computing Center (US), named “Magellan.” While Magellan’s initial target is to provide a tool for computational science in a cloud environment, it can be easily modified to become a center for data processing accessed by many researchers and scientists

Until recently, high performance computing has not been a good candidate for cloud computing due to its requirement for tight integration between server nodes via low-latency interconnects. The performance overhead associated with host virtualization, a prerequisite technology for migrating local applications to the cloud, quickly erodes application scalability and efficiency in an HPC context. The new virtualization solutions such as KVM and XEN aim to solve the performance issue by allowing native performance capabilities from the virtual machines by reducing the virtualization management overhead and by allowing direct access from the virtual machines to the network.

High-speed networking is a critical requirement for affordable high performance computing, as clusters of servers and storage need to be able to communicate as fast as possible between them. A vast majority of the world top 100 supercomputers are using the high-speed InfiniBand networking due to this reason, and the interconnect allows those systems to reach to more than 90 percent efficiency, a critical element for effective for high performance computing in any infrastructure, including clouds. National Energy Research Scientific Computing Center (NERSC, US) “Magellan” system is using InfiniBand as the interconnect to provide the fastest connection between servers and storage in order to allow the maximum gain from the system, highest efficiency and an infrastructure that will be able to analyze data in real time.

Power consumption is another important issue for high performance clouds. As the HPC clouds become bigger, affordability of science discovery will be determined by the ability so the save the costs of the power and cooling. Power management, which is implemented within the CPUs, the interconnect and the system management and scheduling will need to be integrated as a comprehensive solution. Non utilized sections of the clouds need to be powered off or moved into power saving states and the scheduling mechanism will need to incorporate topology awareness.

The HPC Advisory Council HPC|Cloud group is working to investigate the creation and usage models of clouds in HPC. Past activities on smart scheduling mechanisms have been published on the council’s Web site, and future results will include the usage of KVM and XEN, manycore CPUs (such as AMD’s Magny-Cours which includes 12 cores in a single CPU) and cloud management software (such as Platform ISF) will be published throughout 2010. The HPC Advisory Council will continue to investigate the emerging technologies and aspects that will lead us into the fourth mode of science.

Acknowledgments

The authors would like to thank Cydney Stevens for her vision and guidance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This