Cloud Computing Will Usher in a New Era of Science Discovery

By Gilad Shainer, Brian Sparks, Scot Schultz, Eric Lantz, William Liu, Tong Liu, and Goldi Misra

January 26, 2010

Computational science is the field of study concerned with constructing mathematical models and numerical techniques that represent scientific, social scientific or engineering problems and employing these models on computers, or clusters of computers to analyze, explore or solve these models. Numerical simulation enables the study of complex phenomena that would be too expensive or dangerous to study by direct experimentation. The quest for ever-higher levels of detail and realism in such simulations requires enormous computational capacity, and has provided the impetus for breakthroughs in computer algorithms and architectures.

Due to these advances, computational scientists and engineers can now solve large-scale problems that were once thought intractable by creating the related models and simulate them via high performance compute clusters or supercomputers. Simulation is being used as an integral part of the manufacturing, design and decision-making processes, and as a fundamental tool for scientific research. Problems where high performance simulation play a pivotal role include for example weather and climate prediction, nuclear and energy research, simulation and design of vehicles and aircrafts, electronic design automation, astrophysics, quantum mechanics, biology, computational chemistry and more.

Computation is commonly considered the third mode of science, where the previous modes or paradigms were experimentation/observation and theory. In the past, science was performed by observing evidence of natural or social phenomena, recording measurable data related to the observations, and analyzing this information to construct theoretical explanations of how things work. With the introduction of high performance supercomputers, the methods of scientific research could include mathematical models and simulation of phenomenon that are too expensive or beyond our experiment’s reach. With the advent of cloud computing, a fourth mode of science is on the horizon.

The concept of computing “in a cloud” is typically referred as a hosted computational environment (could be local or remote) that can provide elastic compute and storage services for users per demand. Therefore the current usage model of cloud environments is aimed at computational science. But future clouds can serve as environments for distributed science to allow researchers and engineers to share their data with their peers around the globe and allow expensive achieved results to be utilized for more research projects and scientific discoveries.

To allow the shift to the fourth mode of “science discovery,” cloud environments will need not only to provide capability to share the data created by the computational science and the various observations results, but also to be able to provide cost-effective high performance computing capabilities, similar to that of today’s leading supercomputers, in order to be able to rapidly and effectively analyze the data flood. Moreover, an important criteria of clouds need to be fast provisioning of the cloud resources, both compute and storage, in order to service many users, many different analysis and be able to suspend tasks and bring them back to life in a fast manner. Reliability is another concern, and clouds need to be able to be “self healing” clouds where failing components can be replaced by spares or on-demand resources to guarantee constant access and resource availability.

The use of grids for scientific computing has become successful in the fast years and many international projects led to the establishment of worldwide infrastructures available for computational science. The Open Science Grid provides support for data-intensive research for different disciplines such as biology, chemistry, particle physics, and geographic information systems. Enabling Grid for ESciencE (EGEE) is an initiative funded by the European Commission that connects more than 91 institutions in Europe, Asia, and United States of America, to construct the largest multi-science computing grid infrastructure of the world. TeraGrid is an NSF funded project that provides scientists with a large computing infrastructure built on top of resources at nine resource provider partner sites. It is used by 4000 users at over 200 universities that advance research in molecular bioscience, ocean science, earth science, mathematics, neuroscience, design and manufacturing, and other disciplines. While grids can provide a good infrastructure for shared science and data analysis, several issues make the grids problematic to lead the fourth mode of science — limited software flexibility, applications typically need to be pre-packaged, non elasticity and lack of virtualization. Those missing items can be delivered through cloud computing.

Cloud computing addresses many of the aforementioned problems by means of virtualization technologies, which provide the ability to scale up and down the computing infrastructure according to given requirements. By using cloud-based technologies scientists can have easy access to large distributed infrastructures and completely customize their execution environment. Furthermore, effective provisioning can support many more activities and suspend or bring to life activities in an instant. This makes the spectrum of options available to scientists wide enough to cover any specific need for their research.

In many scientific fields of studies, the instruments are extremely expensive, and as such, the data must be shared. With this data explosion and as high performance systems become a commodity infrastructure, the pressure to share scientific data is increasing. That resonates well with the emerging cloud computing trend. While for the moment cloud computing appears to be a cost effective alternative for IT spending, or the shift of enterprise IT centers from capital expense to operational expense, research institutes have started exploring how cloud computing can create the desired compute centralization and an environment for researchers to chare and crunch the flood of data. One example is the new system at the National Energy Research Scientific Computing Center (US), named “Magellan.” While Magellan’s initial target is to provide a tool for computational science in a cloud environment, it can be easily modified to become a center for data processing accessed by many researchers and scientists

Until recently, high performance computing has not been a good candidate for cloud computing due to its requirement for tight integration between server nodes via low-latency interconnects. The performance overhead associated with host virtualization, a prerequisite technology for migrating local applications to the cloud, quickly erodes application scalability and efficiency in an HPC context. The new virtualization solutions such as KVM and XEN aim to solve the performance issue by allowing native performance capabilities from the virtual machines by reducing the virtualization management overhead and by allowing direct access from the virtual machines to the network.

High-speed networking is a critical requirement for affordable high performance computing, as clusters of servers and storage need to be able to communicate as fast as possible between them. A vast majority of the world top 100 supercomputers are using the high-speed InfiniBand networking due to this reason, and the interconnect allows those systems to reach to more than 90 percent efficiency, a critical element for effective for high performance computing in any infrastructure, including clouds. National Energy Research Scientific Computing Center (NERSC, US) “Magellan” system is using InfiniBand as the interconnect to provide the fastest connection between servers and storage in order to allow the maximum gain from the system, highest efficiency and an infrastructure that will be able to analyze data in real time.

Power consumption is another important issue for high performance clouds. As the HPC clouds become bigger, affordability of science discovery will be determined by the ability so the save the costs of the power and cooling. Power management, which is implemented within the CPUs, the interconnect and the system management and scheduling will need to be integrated as a comprehensive solution. Non utilized sections of the clouds need to be powered off or moved into power saving states and the scheduling mechanism will need to incorporate topology awareness.

The HPC Advisory Council HPC|Cloud group is working to investigate the creation and usage models of clouds in HPC. Past activities on smart scheduling mechanisms have been published on the council’s Web site, and future results will include the usage of KVM and XEN, manycore CPUs (such as AMD’s Magny-Cours which includes 12 cores in a single CPU) and cloud management software (such as Platform ISF) will be published throughout 2010. The HPC Advisory Council will continue to investigate the emerging technologies and aspects that will lead us into the fourth mode of science.

Acknowledgments

The authors would like to thank Cydney Stevens for her vision and guidance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This