Thoughts, Observations, Beliefs & Opinions About the NSF Supercomputer Centers

By Sidney Karin

January 28, 2010

There is no such thing as an NSF (Supercomputer) Center and there never has been. There should be. What there are, in the words of Ed Hayes, then comptroller of NSF, are “NSF ASSISTED Supercomputer Centers.”

This is a double edged sword. The directors of the NSF centers have historically had considerably more latitude and agility in their decision making and in the operations of their organizations than the directors of their peer organizations, sponsored by other federal agencies have had. This has led to much success in the past; in the pursuit of new avenues of research, development of innovative technologies, creation of research partnerships, fostering of relationships with both vendor and user industrial organizations and the raising of funds from outside sources.

The other side of the coin is that NSF has neither provided sufficient funding nor has it provided any other kind of support when centers found themselves in one sort of difficulty or another. In my direct experience, and to my direct knowledge of activities at other centers, NSF funding has been inadequate to provide the direct support of what used to be called the base program. Each center has raised funds from industry partners, state governments, local universities, and foundations.

These funds have been necessary to the successful operation of the base program and essential to the added value that the centers have created. This again is in contrast to the process at peer centers funded by other federal agencies. In my opinion this has been a worthwhile tradeoff for the so called NSF Supercomputer Centers. I would not have traded places with any of my contemporaries in other organizations. Nevertheless, it is possible to preserve the majority of the benefits while eliminating much of the negatives.

It comes as no surprise that the benefits of a research endeavor often go beyond the planned benefits of the research. Indeed, they frequently arise instead of the planned benefits. The so called NSF Supercomputer Centers have consistently provided modern state of the art computational infrastructure to the academic research community. Indeed, they have gone beyond that in the provision of early instances of leading edge computational and peripheral systems and the introduction of alternative approaches to computational science and engineering. More to the point, the centers have produced other results of enormous impact to the larger national and international community. MOSAIC is at the top of this list, but there have been many other successes. Note also the fundamental role of these centers in the establishment of the NSFnet and the transition to the commercial internet as we now know it.

These ancillary benefits have arisen precisely because of the flexibility and discretion afforded the centers. Indeed, in 1976 when DOE allowed such flexibility to its centers, LANL forged a deal with Seymour Cray that led to the establishment of the modern supercomputer industry. Later, when DOE would no longer allow such flexibility to its centers, the NSF centers were by default given the opportunity to work directly with vendors in the development and deployment of first of a kind computational systems. Some of these first of a kind systems became one of a kind systems while others flourished as is the nature of a research enterprise. The nation has benefited greatly from this prototype and test bed process at the NSF centers. In addition, the available flexibility and discretion afforded the centers was evident in numerous examples of the emergence of new research emphasis, new research directions, innovative software and technology development and deployment, and dozens, if not hundreds, of spin off commercial enterprises.

In recent years I have been saddened to observe (from a distance) the substantial reduction in this centrally important aspect of the program. Flexibility and agility are greatly reduced. Large system procurements seem far more appropriate to acquisition of business data processing systems for applications such as payroll and accounts receivable than for the advancement of science. The greatest accomplishments of NSF supercomputer centers program would not, and could not, have taken place under current procedures.

It should be obvious that I am calling for a return to the original successful model that was put in place when the centers were first established. But all was not perfect in that model either. In particular, despite the obligations of the Cooperative Agreements, NSF often acted capriciously and undependably in the actual provision of funds. This was a severe destabilizing influence.

Finally, the capriciousness of the NSF funding support was not limited to failure to live up to signed cooperative agreements. It extended to in effect compelling each center to recompete for its very existence on an annual basis. This has had a debilitating impact on center staff at all levels and upon the level of success of the centers. What is needed is some form of institutionalization that would remove the fear of termination and the attendant enormous efforts put forth to prevent termination, all at the expense of productive efforts in furtherance of the center’s missions and the academic research enterprise overall.

—–

Reprinted with permission of Sidney Karin, Professor of Computer Science and Engineering, University of California, San Diego. The original article was published in December 2009 by the National Institute for Computational Sciences (NICS).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Researchers from Jülich Supercomputing Centre, Wuhan University, and the University of Groningen, reported last week they successfully simulated a quantum computer with 46 quantum bits (qubits) for the first time. The r Read more…

Researchers Advance User-Level Container Solution for HPC

December 18, 2017

Most scientific computing facilities, such us HPC or grid infrastructures, are shared among different research disciplines, and thus the system software environment needs to be generic enough to accommodate different use Read more…

By Isabel Campos & Jorge Gomes

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

Researchers Advance User-Level Container Solution for HPC

December 18, 2017

Most scientific computing facilities, such us HPC or grid infrastructures, are shared among different research disciplines, and thus the system software environ Read more…

By Isabel Campos & Jorge Gomes

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This