Chips Ahoy: Vendors Show Off Their Latest Silicon

By Michael Feldman

February 9, 2010

Chipmakers converged on San Francisco this week to talk up their newest semiconductor products at the International Solid State Circuits Conference (ISSCC). Of particular interest to the HPC crowd are Intel’s Westmere EP and “Tukwila” Itanium 9300, and IBM’s POWER7.

In truth, the new quad-core Tukwila is not likely to have much of an impact on HPC. SGI is the only real hope that this seventh-generation Itanium will see any supercomputing action. Under the new Rackable leadership, SGI has left a lot to the imagination as far as possible Itanium-equipped Altix systems. SGI previewed its Nehalem EX-based Altix UV servers last November, and implied there would be Itanium-based versions of UV at some point, but has yet to talk about any products.

It might be relatively straightforward for SGI to build a Tukwila-based UV. The Itanium 9300 processors share platform components with Nehalem EX, including the QuickPath Interconnect (QPI), the Scalable Memory Interconnect, the 7500 Memory Buffer, and the I/O hub. Because of this commonality, Intel says manufacturers could use a common node controller for both Nehalem EX and Itanium 9300 systems. Given that SGI has already built a UV hub node controller for its shared memory systems, the company may have an easy path to an Itanium UV product.

But in general, the new Itanium is being targeted for mission-critical systems in the enterprise. These are typically high-end servers that can’t tolerate any downtime, and are especially valued for high-volume transactional applications in industries like energy, health care, telecom and manufacturing. According to Intel, Itanium’s penetration into this market is growing, reaching $5 billion in 2008 (estimated to be $4 billion in 2009 due to the recession). The chipmaker also points to a growing roster of OEMs that will be offering Itanium 9300-based machines, including Bull, HP, NEC, Hitachi, and new Itanium converts, Supermicro and China-based Inspur.

By contrast, the Westmere EP is guaranteed to see plenty of HPC action. The new Xeon chip is the 32 nm shrink of the highly popular quad-core Nehalem EP for dual-socket servers. Intel’s x86 franchise is represented by nearly 400 of the top 500 HPC systems in the world, a proportion that is likely even higher in the overall HPC server space. Intel hasn’t locked down a date when the new Xeons will start shipping, although the plan is to get them on the street in the first half of 2010.

The new features of Westmere can be summed up thusly: six cores and 12 MB of cache. That represents a 50 percent increase compared to Nehalem EP. The smaller transistor geometries mean Intel engineers were able to cram over a billion transistors on the die, which is apparently enough silicon real estate to add the two additional cores and 4 MB more cache. A quad-core variant of the Westmere EP will also be available at some point.

Even with the additional cores and cache, there was some spare silicon left over to add support for special AES (Advanced Encryption Standard) instructions, which, as its name implies, is aimed at speeding up encryption/decryption software. The engineers also came up with some additional power gating smarts to Westmere, allowing the processor to shut down processor components other than the actual processor cores (like the L3 cache, QPI interfaces, and memory controller), although it’s not clear if this feature will be available in the Xeon server parts.

Since Intel did its big architectural reset last year with the Nehalem redesign, all the goodies from that generation — integrated memory controller, QPI interface, “Hyper-Threading,” etc. — will be carried over to the Westmere processor. That should guarantee socket compatibility with the chipsets and DDR3 memory used in the Nehalem EP machines. Whether or not this means HPC users will be swapping out Nehalem EP parts with their Westmere counterparts remains to be seen.

Finally, IBM officially launched its much-anticipated POWER7 processor this week. The new chips are aimed at high-end enterprise and supercomputing servers, and also support large-scale transaction processing and analytics workloads across all application domains. In conjunction with the chip launch, four POWER7-equipped server systems were also announced: the Power 780, 770, 755, and 750. “These are the most flexible systems ever made by any company in the world,” boasted Ross Mauri, general manager of IBM Power Systems.

Hyperbole aside, of the three chips mentioned in this article, the POWER7 is the definite performance leader. In a clear departure from the POWER6 design, which delivered high clock speeds (up to 5 GHz), dual-core processors and off-chip L3 cache, the POWER7 retreats a bit on the clock speed (3 to 4 GHz), but comes with up to 8 cores and 32 MB of on-chip L3. Compare this to Tukwila at 4 cores and 24 MB of L3, and Westmere EP at 6 cores and 12 MB. Note that both the Intel chips execute up to two threads per core simultaneously, while the POWER7 can go up to four threads. The comparison with Westmere is especially interesting since IBM managed to get two more cores, two more threads per core, and 20 more megabytes of L3 cache using roughly the same number of transistors: 1.2 billion for POWER7 versus 1.17 billion for Westmere EP.

So how did Big Blue manage to make the most of its die real estate? The biggest contributor was IBM’s decision to go with embedded DRAM (eDRAM) for the on-chip L3 cache. Compared to traditional SRAM-based L3, which uses six transistors per bit, eDRAM uses just one transistor plus one capacitor. According to IBM, if they relied on SRAM technology, the equivalent chip would have consumed around 2 billion transistors and used significantly more power.

Given the x86 juggernaut in high performance computing, it’s not clear how much of the market POWER7 will grab. It was interesting that IBM’s press release included a podcast with Cindy Farach-Carson, associate vice provost for Research at Rice University and a professor of biochemistry and cell biology, who was introduced as an early user of POWER7 technology. Her work involves analyzing cancer genomic data to find the micro-RNA sequence responsible for turning slow growing cancers into more invasive and deadly variants.

The Power 755 server is the POWER7 product IBM has built for the HPC market. A 755 box contains four POWER7 processors, and since each core can execute up to four threads, a single node has the capability to run 128 threads simultaneously. Presumably this is the server (or a version thereof) that will go into the multi-petaflop Blue Waters supercomputer destined for the University of Illinois at Urbana-Champaign/NCSA sometime in 2011. In the interim, IBM is hoping other HPC users latch on to POWER7. If not, IBM will be happy to sell you a Westmere EP cluster.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This