Pico Computing Takes Scale-Up Approach to FPGAs

By Michael Feldman

February 17, 2010

As high performance computing vendors polish their server and workstation portfolios with the latest multicore CPU and GPGPU wonders, Pico Computing is quietly making inroads into the HPC application space with its FPGA-based platforms. By picking the spots where reconfigurable computing makes the most sense, the company is looking to leverage its scalable FPGA technology to greatest effect.
Pico Computing E-16 ExpressCard

Seattle-based Pico was formed in November 2004 by founder Robert Trout. Using internal funding, the startup spent a couple of years on product development and subsequently started bringing its Xilinx-based FPGA computing platforms to market in 2007 and 2008. True to its name, Pico is a small company, with a staff of a dozen or so full-timers. As a private entity, they are not obliged to release financial results, but according to Mark Hur, Pico’s director of sales and marketing, the company is profitable today.

The company currently offers a range of platforms from a single FPGA card to large-scale FPGA “clusters” that contain over 100 of the devices in a 4U chassis. The company’s flagship E-16 Virtex-5 FPGA card was released in 2007. “To this day, that’s been the most successful product we’ve launched thus far,” says Hur. According to him, there are now multiple clusters of E-16s in the marketplace.

Recently, Pico demonstrated a password recovery system using a cluster of 77 Virtex-5 FPGAs, housed in a 4U enclosure and consuming less than 900 watts of power. According to the company, the system provides the computational equivalent of about 1,000 dual-core CPUs (Intel Core 2 Duo) for different recovery algorithms, specifically FileVault, Wi-Fi Protected Access (WPA), and Wired Equivalent Privacy (WEP). In fact, for the WEP algorithm, the Pico cluster delivered a 4,620-fold performance improvement and a 1,000-fold decrease in power consumption compared to the dual-core CPU implementation.

That level of performance and compute density for cryptography applications helps explain why Pico’s most beloved market is data security. The three-letter federal agencies in the US government are the main customers here, and they buy both off-the-shelf and custom products from the company. Security still represents the majority of Pico’s business today, although you’re not likely to see an NSA code cracking case study on the company’s Web site anytime soon.

Other favorite application areas for Pico include bioinformatics, financial analytics, image processing, and certain other types of scientific computing. The reason that FPGAs are so adept at these types of applications, from both a performance and power consumption point of view, is their ability to morph their hardware structures to match operators and data types for a given algorithm. This is especially true when the underlying algorithms are not based on typical integer or floating point data types.

In genomics applications, for example, a lot of algorithms are based on the four fundamental nucleoside bases (adenine, thymine, guanine, cytosine) that make up RNA and DNA. Thus a nucleoside data type would only be two bits wide. And unlike CPUs and GPUs, you can map FPGA resources to match that data size exactly. “You don’t need full 32-bit or 64-bit data paths and operators,” explains David Pellerin, Pico’s director of strategic marketing. “It’s wasteful.” That’s why some applications that get 100-fold acceleration from a GPU can get 1,000-fold from an FPGA, when compared to a CPU.

Pellerin, who used to be the chief technology officer at Impulse Accelerated Technologies, the makers of FPGA programming language Impulse C, was brought aboard Pico to energize the company’s marketing story and get behind some of the new product rollouts they’ve launched over the past few months. The newest offerings are based on the latest Spartan-6 and Virtex-6 hardware from FPGA-maker Xilinx. Pico’s most recent addition, the M-series modules, allows customers to construct standard-sized PCIe cards with up to 12 FPGAs.

Pico’s flagship E-series cards, on the other hand, plug into PCIe slots on a desktop system. But like the M-series, they can also be scaled into multiple FPGA configurations to build a computationally-dense FPGA cluster inside a single compute node. For HPC workloads especially, up to seven of the latest E-18 cards can be plugged into a PCIe carrier card, and multiple carrier cards can be installed into a 4U rack-mounted chassis. The idea is for customers to begin development with a single card plugged into a laptop or desktop, and when it’s time to deploy the full configuration, multiple cards can be plugged into PCIe backplane and installed in rack-mounted appliance or server.

From the software side, Pico has a consistent set of APIs that apply across its entire product set, and these interfaces can be accessed from either low-level Verilog code, or an FPGA-friendly C language, like Impulse C. Most of Pico’s customers writing cryptography apps use Verilog, but Impulse C tends to be more popular in bioinformatics and more traditional HPC codes.

Unlike other FPGA board makers, where one or two devices is matched to a host processor, Pico builds modular devices and backplanes such that as many as 177 FPGAs can be connected to a single CPU. That level of scalability means customers can squeeze a huge amount of computing hardware into very small enclosures. Since the core of most of these algorithms is just highly parallelized bit arithmetic, the CPU’s role is limited to driving the sequential part of the application. “For many applications, certainly in areas like cryptography and bioinformatics, the more FPGAs you can throw at the problem, the better it’s going to be,” says Pellerin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This