Pico Computing Takes Scale-Up Approach to FPGAs

By Michael Feldman

February 17, 2010

As high performance computing vendors polish their server and workstation portfolios with the latest multicore CPU and GPGPU wonders, Pico Computing is quietly making inroads into the HPC application space with its FPGA-based platforms. By picking the spots where reconfigurable computing makes the most sense, the company is looking to leverage its scalable FPGA technology to greatest effect.
Pico Computing E-16 ExpressCard

Seattle-based Pico was formed in November 2004 by founder Robert Trout. Using internal funding, the startup spent a couple of years on product development and subsequently started bringing its Xilinx-based FPGA computing platforms to market in 2007 and 2008. True to its name, Pico is a small company, with a staff of a dozen or so full-timers. As a private entity, they are not obliged to release financial results, but according to Mark Hur, Pico’s director of sales and marketing, the company is profitable today.

The company currently offers a range of platforms from a single FPGA card to large-scale FPGA “clusters” that contain over 100 of the devices in a 4U chassis. The company’s flagship E-16 Virtex-5 FPGA card was released in 2007. “To this day, that’s been the most successful product we’ve launched thus far,” says Hur. According to him, there are now multiple clusters of E-16s in the marketplace.

Recently, Pico demonstrated a password recovery system using a cluster of 77 Virtex-5 FPGAs, housed in a 4U enclosure and consuming less than 900 watts of power. According to the company, the system provides the computational equivalent of about 1,000 dual-core CPUs (Intel Core 2 Duo) for different recovery algorithms, specifically FileVault, Wi-Fi Protected Access (WPA), and Wired Equivalent Privacy (WEP). In fact, for the WEP algorithm, the Pico cluster delivered a 4,620-fold performance improvement and a 1,000-fold decrease in power consumption compared to the dual-core CPU implementation.

That level of performance and compute density for cryptography applications helps explain why Pico’s most beloved market is data security. The three-letter federal agencies in the US government are the main customers here, and they buy both off-the-shelf and custom products from the company. Security still represents the majority of Pico’s business today, although you’re not likely to see an NSA code cracking case study on the company’s Web site anytime soon.

Other favorite application areas for Pico include bioinformatics, financial analytics, image processing, and certain other types of scientific computing. The reason that FPGAs are so adept at these types of applications, from both a performance and power consumption point of view, is their ability to morph their hardware structures to match operators and data types for a given algorithm. This is especially true when the underlying algorithms are not based on typical integer or floating point data types.

In genomics applications, for example, a lot of algorithms are based on the four fundamental nucleoside bases (adenine, thymine, guanine, cytosine) that make up RNA and DNA. Thus a nucleoside data type would only be two bits wide. And unlike CPUs and GPUs, you can map FPGA resources to match that data size exactly. “You don’t need full 32-bit or 64-bit data paths and operators,” explains David Pellerin, Pico’s director of strategic marketing. “It’s wasteful.” That’s why some applications that get 100-fold acceleration from a GPU can get 1,000-fold from an FPGA, when compared to a CPU.

Pellerin, who used to be the chief technology officer at Impulse Accelerated Technologies, the makers of FPGA programming language Impulse C, was brought aboard Pico to energize the company’s marketing story and get behind some of the new product rollouts they’ve launched over the past few months. The newest offerings are based on the latest Spartan-6 and Virtex-6 hardware from FPGA-maker Xilinx. Pico’s most recent addition, the M-series modules, allows customers to construct standard-sized PCIe cards with up to 12 FPGAs.

Pico’s flagship E-series cards, on the other hand, plug into PCIe slots on a desktop system. But like the M-series, they can also be scaled into multiple FPGA configurations to build a computationally-dense FPGA cluster inside a single compute node. For HPC workloads especially, up to seven of the latest E-18 cards can be plugged into a PCIe carrier card, and multiple carrier cards can be installed into a 4U rack-mounted chassis. The idea is for customers to begin development with a single card plugged into a laptop or desktop, and when it’s time to deploy the full configuration, multiple cards can be plugged into PCIe backplane and installed in rack-mounted appliance or server.

From the software side, Pico has a consistent set of APIs that apply across its entire product set, and these interfaces can be accessed from either low-level Verilog code, or an FPGA-friendly C language, like Impulse C. Most of Pico’s customers writing cryptography apps use Verilog, but Impulse C tends to be more popular in bioinformatics and more traditional HPC codes.

Unlike other FPGA board makers, where one or two devices is matched to a host processor, Pico builds modular devices and backplanes such that as many as 177 FPGAs can be connected to a single CPU. That level of scalability means customers can squeeze a huge amount of computing hardware into very small enclosures. Since the core of most of these algorithms is just highly parallelized bit arithmetic, the CPU’s role is limited to driving the sequential part of the application. “For many applications, certainly in areas like cryptography and bioinformatics, the more FPGAs you can throw at the problem, the better it’s going to be,” says Pellerin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This