Pico Computing Takes Scale-Up Approach to FPGAs

By Michael Feldman

February 17, 2010

As high performance computing vendors polish their server and workstation portfolios with the latest multicore CPU and GPGPU wonders, Pico Computing is quietly making inroads into the HPC application space with its FPGA-based platforms. By picking the spots where reconfigurable computing makes the most sense, the company is looking to leverage its scalable FPGA technology to greatest effect.
Pico Computing E-16 ExpressCard

Seattle-based Pico was formed in November 2004 by founder Robert Trout. Using internal funding, the startup spent a couple of years on product development and subsequently started bringing its Xilinx-based FPGA computing platforms to market in 2007 and 2008. True to its name, Pico is a small company, with a staff of a dozen or so full-timers. As a private entity, they are not obliged to release financial results, but according to Mark Hur, Pico’s director of sales and marketing, the company is profitable today.

The company currently offers a range of platforms from a single FPGA card to large-scale FPGA “clusters” that contain over 100 of the devices in a 4U chassis. The company’s flagship E-16 Virtex-5 FPGA card was released in 2007. “To this day, that’s been the most successful product we’ve launched thus far,” says Hur. According to him, there are now multiple clusters of E-16s in the marketplace.

Recently, Pico demonstrated a password recovery system using a cluster of 77 Virtex-5 FPGAs, housed in a 4U enclosure and consuming less than 900 watts of power. According to the company, the system provides the computational equivalent of about 1,000 dual-core CPUs (Intel Core 2 Duo) for different recovery algorithms, specifically FileVault, Wi-Fi Protected Access (WPA), and Wired Equivalent Privacy (WEP). In fact, for the WEP algorithm, the Pico cluster delivered a 4,620-fold performance improvement and a 1,000-fold decrease in power consumption compared to the dual-core CPU implementation.

That level of performance and compute density for cryptography applications helps explain why Pico’s most beloved market is data security. The three-letter federal agencies in the US government are the main customers here, and they buy both off-the-shelf and custom products from the company. Security still represents the majority of Pico’s business today, although you’re not likely to see an NSA code cracking case study on the company’s Web site anytime soon.

Other favorite application areas for Pico include bioinformatics, financial analytics, image processing, and certain other types of scientific computing. The reason that FPGAs are so adept at these types of applications, from both a performance and power consumption point of view, is their ability to morph their hardware structures to match operators and data types for a given algorithm. This is especially true when the underlying algorithms are not based on typical integer or floating point data types.

In genomics applications, for example, a lot of algorithms are based on the four fundamental nucleoside bases (adenine, thymine, guanine, cytosine) that make up RNA and DNA. Thus a nucleoside data type would only be two bits wide. And unlike CPUs and GPUs, you can map FPGA resources to match that data size exactly. “You don’t need full 32-bit or 64-bit data paths and operators,” explains David Pellerin, Pico’s director of strategic marketing. “It’s wasteful.” That’s why some applications that get 100-fold acceleration from a GPU can get 1,000-fold from an FPGA, when compared to a CPU.

Pellerin, who used to be the chief technology officer at Impulse Accelerated Technologies, the makers of FPGA programming language Impulse C, was brought aboard Pico to energize the company’s marketing story and get behind some of the new product rollouts they’ve launched over the past few months. The newest offerings are based on the latest Spartan-6 and Virtex-6 hardware from FPGA-maker Xilinx. Pico’s most recent addition, the M-series modules, allows customers to construct standard-sized PCIe cards with up to 12 FPGAs.

Pico’s flagship E-series cards, on the other hand, plug into PCIe slots on a desktop system. But like the M-series, they can also be scaled into multiple FPGA configurations to build a computationally-dense FPGA cluster inside a single compute node. For HPC workloads especially, up to seven of the latest E-18 cards can be plugged into a PCIe carrier card, and multiple carrier cards can be installed into a 4U rack-mounted chassis. The idea is for customers to begin development with a single card plugged into a laptop or desktop, and when it’s time to deploy the full configuration, multiple cards can be plugged into PCIe backplane and installed in rack-mounted appliance or server.

From the software side, Pico has a consistent set of APIs that apply across its entire product set, and these interfaces can be accessed from either low-level Verilog code, or an FPGA-friendly C language, like Impulse C. Most of Pico’s customers writing cryptography apps use Verilog, but Impulse C tends to be more popular in bioinformatics and more traditional HPC codes.

Unlike other FPGA board makers, where one or two devices is matched to a host processor, Pico builds modular devices and backplanes such that as many as 177 FPGAs can be connected to a single CPU. That level of scalability means customers can squeeze a huge amount of computing hardware into very small enclosures. Since the core of most of these algorithms is just highly parallelized bit arithmetic, the CPU’s role is limited to driving the sequential part of the application. “For many applications, certainly in areas like cryptography and bioinformatics, the more FPGAs you can throw at the problem, the better it’s going to be,” says Pellerin.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This