Remote Direct Memory Access Networking for HPC: Comparative Review of 10GbE iWARP and InfiniBand

By Saqib Jang

February 24, 2010

The Rise of HPC Cluster Computing

While the HPC market is expected to experience a revenue dip in 2009, growth is expected to resume in 2010 and remain a bright spot in the overall IT market. The most important feature of the HPC growth trend is that it will continue to be fueled primarily by purchases of Linux cluster systems priced under $250,000. Cluster computing systems, separate compute nodes built from standard component technologies have caused disruptive changes in the HPC market.

As the component technologies of cluster systems have improved and buyers have become more confident running cluster systems, they have inevitably redirected capital once earmarked for large custom systems to larger cluster systems. These much larger clusters, often with thousands of processors, present opportunities for huge performance gains through improved parallel performance resulting in an overall higher order of magnitude return-on-investment (ROI). While algorithm and application tuning is often required to obtain these benefits, so often are cost, bandwidth, message rate, and latency of cluster interconnects.

One consequence of the range of requirements for cluster networking is that the leading interconnects in HPC are Gigabit Ethernet (which is based on Ethernet networking standard) and InfiniBand (delivering upwards of 10X performance vs. GbE). Both show significant deployment in HPC. The latest TOP500 list of HPC systems has 259 Gigabit Ethernet-based deployments compared to 181 InfiniBand-connected systems. The deployment of 10 Gigabit Ethernet (10GbE) cluster networking is emerging at this point. The price of this interconnect has been falling as the volume of its shipments grow. This growth is based on a combination of its 10X performance over GbE along with the ease of deployment due to its Ethernet heritage positions it for a bright future as a cluster interconnect.

As cluster systems have grown, so has the total amount of data in play in the average parallel HPC application. This has significant implications for HPC storage systems. Storage systems need to have the best possible bandwidth and latency characteristics. HPC storage systems have themselves become increasingly clustered and parallel as well as network-attached and accessible from all nodes on the cluster through the interconnect. In this context, the demand for interconnect solutions that supports a converged storage and cluster interconnect fabric is expected to grow significantly.

10GbE iWARP Overview and Value Proposition

For years, Ethernet has been the de facto standard LAN for connecting users to each other and to network resources. Ethernet sales volumes make it unquestionably the most cost-effective datacenter fabric to deploy and maintain. The latest generation of Ethernet, 10 Gigabit Ethernet (10GbE), offers a 10 Gbps data rate, which simplifies growth for existing data networking applications while removing the bandwidth barriers to deployment for highest-performance HPC clustering and storage networking.

  • 10GbE end-to-end performance now compares very favorably with that of more specialized datacenter interconnects, which eliminates performance as a drawback to the adoption of an Ethernet unified data center fabric.
     
  • Off-loading cluster and storage protocol processing from the central CPU to intelligent 10GbE NIC can also improve the power efficiency of end stations because off-load ASIC processors are generally considerably more power-efficient in executing protocol workloads.
     
  • The value of implementing TCP/IP protocol processing in silicon at 10 Gbps data rates is clear. Effectively, such approaches have the potential of reducing the relative bandwidth and latency overhead effect of TCP/IP protocol processing to zero.

Achieving 10GbE performance for latency-sensitive HPC communications has required solving Ethernet’s long-standing overhead problems; problems that, in slower Ethernet generations, were adequately overcome by steadily increasing CPU clock speeds.

Enter 10GbE iWARP

The iWARP extensions to TCP/IP focus on eliminating the three major sources of networking overhead — transport (TCP/IP) processing, intermediate buffer copies, and application context switches — that collectively account for nearly 100 percent of CPU overhead related to networking. Specifically, iWARP implements a number of mechanisms to provide a low-latency means of passing RDMA over Ethernet.

The iWARP extensions utilize advanced techniques to reduce CPU overhead, memory bandwidth utilization, and latency by a combination of offloading TCP/IP processing from the CPU, eliminating unnecessary buffering, and dramatically reducing expensive operating system calls and context switches — moving data management and network protocol processing to an accelerated RDMA over TCP/IP NIC (or R-NIC) 10 Gigabit Ethernet adapter.

R-NICs can reduce CPU utilization for 10 Gbps transfers to less than 10 percent and can reduce the host component of end-to-end latency to as little as 5–10 microseconds. High port-count 10GbE switches are available, which delivers HPC-class latency performance within 100’s of nanoseconds.

InfiniBand Overview and Value Proposition

InfiniBand is an I/O architecture designed to increase the communication speed between CPUs, devices within servers and subsystems located throughout a network. The original goal behind the release of the InfiniBand specification by the InfiniBand Trade Association was to address the mismatch between the speed of CPUs and the PCI I/O bus, as well as other deficiencies of the PCI bus, including bus sharing, scalability, and fault tolerance.

InfiniBand is a point-to-point, switched I/O fabric architecture. Both devices at each end of a link have full access to the communication path. To go beyond a point and traverse the network, switches come into play. By adding switches, multiple points can be interconnected to create a fabric. As more switches are added to a network, aggregated bandwidth of the fabric increases. By adding multiple paths between devices, switches also provide a greater level of redundancy.

A single InfiniBand link supports 2.5 Gbps in each direction per connection. InfiniBand supports double (DDR) and quad data rate (QDR) speeds, for 5 Gbps or 10 Gbps respectively, at the same data-clock rate. InfiniBand links use 8B/10B encoding — every 10 bits sent carry 8 bits of data, which meansthe net data transmission rate is four-fifths the raw rate. Thus single, double, and quad data rates carry 2, 4, or 8 Gbps respectively.

A quad-rate 12X link therefore carries 120 Gbps raw, or 96 Gbps of useful data. At present, most systems use 4X 10 Gbps (SDR), 20 Gbps (DDR) or 40 Gbps (QDR) connections. However, InfiniBand QDR performance is bounded by the 26 Gbps PCIe Gen2 throughput limitation.

Latency performance of InfiniBand SDR ad DDR switch chips is around 200 nanoseconds. InfiniBand Host Channel Adapters (HCAs) are rated 1-3 microseconds (although effective application-level performance is a different matter).

High-end clustering architectures have provided the main opportunity for InfiniBand deployment. Using the InfiniBand fabric versus Gigabit Ethernet as the cluster inter-process communications (IPC) interconnect typically boosts cluster performance and scalability while improving application response times. InfiniBand also provides exceptional scalability and failover in comparison to Gigabit Ethernet. In short, compared to Gigabit Ethernet, InfiniBand stands out in providing the mechanisms necessary to support the demanding requirements of high-end clustering.

iWARP and InfiniBand Comparative Review

As far as its compatibility with existing datacenter infrastructure, because it is layered on top of TCP, iWARP is fully compatible with existing Ethernet switching equipment that is able to process iWARP traffic out-of-the-box. In comparison, deploying InfiniBand requires environments where two separate network infrastructures are installed and managed as well as specialized InfiniBand to Ethernet gateways for bridging between the two infrastructures.

10GbE infrastructure is available from a range of incumbent and startup vendors. Intel, Broadcom, and Chelsio provide 10GbE iWARP adapters, while 10GbE switches are available from a broad range of vendors including Cisco, HP, IBM, BLADE Network Technologies, Extreme, Force10, Arista, and Voltaire. InfiniBand host channel adapter and switch silicon is only available from two vendors (Mellanox and QLogic), who in turn have signed up a number of OEMs to carry adapter and switching systems.

Both interconnects offer equivalent capabilities for supporting operating systems. The OpenFabrics software stack that is fully integrated into the flavors of Linux distributed by Novell and Red Hat fully supports both 10GbE iWARP and InfiniBand.

10GbE iWARP leverages its heritage to also support acceleration of emerging Ethernet-based storage protocols, including file storage (NFS-RDMA), which is fully supported by the Linux OFED stack. In addition, the Linux OFED stack also enables 10GbE iWARP to out-of-the-box support Lustre networking (LNET). In addition, 10GbE iWARP adapters can also provide concurrent, native support for standard Ethernet protocols such as NFS, CIFS, and iSCSI. In comparison, InfiniBand has had minimal deployments for server-to-storage communications, whether for file or block storage.

Regarding pricing, major server vendors are starting to add a 10 Gigabit Ethernet chip to the motherboard-known as LAN-on-Motherboard (LOM). NIC prices will continue to drop as LOM technology lets NIC vendors reach the high volumes they need to keep costs down, which in turn will drive switch port prices down as well. InfiniBand, on the other hand, has reached a mature market position and, consequently, reductions in the pricing of InfiniBand products will be relatively gradual.

Large-scale clusters built using 10GbE iWARP technology and high port-count 10Gbe switches are gaining ground, and cluster scalability is no longer viewed as inhibiting 10Gbe deployment. InfiniBand technology is an established interconnect for building large node-count clusters.

From a roadmap standpoint, the Ethernet market is moving forward aggressively to develop and implement 40G and 100G-based standards. It is expected that the standard for these versions of Ethernet will be ratified during 2010 and initial implementations based on these standards will be shipping from a range of vendors in the blade server and Ethernet networking switch markets within the next 2 to 3 years.

Converged Enhanced Ethernet

The IEEE has been developing standards collectively referred to as “Data Center Bridging” (DCB) or “Converged Enhanced Ethernet” (CEE) This refers to high speed Ethernet (currently 10 Gbps, with a clear path to 40 Gbps and 100 Gbps), plus a number of new features. The main new features are:

  • Priority-Based Flow Control (802.1Qbb), sometimes called “per-priority pause”
  • Enhanced Transmission Selection (802.1Qaz)
  • Congestion Notification (802.1Qau)

The first two features allow splitting an Ethernet link into multiple “virtual links” that operate independently — bandwidth can be reserved for a given virtual link, and by having per-virtual-link flow control, CEE can ensure that certain traffic classes do not overrun their buffers thus avoiding dropping packets. This congestion notification capability means that we can tell senders to slow down to avoid congestion spreading caused by that flow control.

CEE was developed primarily for use in Fibre Channel over Ethernet (FCoE). FC requires a very reliable network — it simply does not work if packets are dropped because of congestion — and, so, CEE provides the ability to segregate FCoE traffic on top of a “no drop” virtual link.

The roadmap initiatives in the InfiniBand space consist of QDR, EDR (2011), and RDMA over CEE. However, these roadmap initiatives suffer from the same limitations that have been a traditional challenge for InfiniBand, namely, limited vendor support.

RoCEE Overview and Value Proposition

Mellanox, the leader in the InfiniBand market, is behind the emerging RDMA over Converged Enhanced Ethernet (RoCEE) protocol proposal. RoCEE is designed to allow the deployment of RDMA semantics on Converged Enhanced Ethernet fabric by running the IB transport protocol using Ethernet frames.

Mellanox’s RoCEE proposal was motivated in order to create a protocol analogous to FCoE for Ethernet-based cluster networking. In other words, to take the InfiniBand transport layer and package it into Ethernet frames, instead of using the iWARP protocol for Ethernet-based high-performance cluster networking. But there are a number of challenges associated with this proposal:

First, one of the major motivations behind the RoCEE proposal is that it is the fastest path forward for an Ethernet-based alternative to InfiniBand. However, this ignores the fact that iWARP adapters are already shipping from multiple vendors, including Intel, Chelsio, and Broadcom. In addition, iWARP will automatically leverage the performance benefits of CEE as support for it will be ubiquitous in all 10GbE server adapter and LOM implementations, iWARP and non-iWARP alike.

Second, the idea that an InfiniBand over Ethernet (IBoE) specification will be quick or easy to develop flies in the face of the experience with FcoE. While FCoE sounded simple in concept, it turns out that the standards work took at least three years. In comparison, IBoE is more complicated to specify, and fewer resources are available for it, so a realistic view is that a true standard is very far away.

Last, RoCEE proponents point to the performance overhead challenges related to iWARP based on the TCP/IP protocol. However, this does not take into account the efficiency of silicon-based implementations of 10 Gbps TCP/IP. In addition, iWARP is also positioned to automatically take advantage of CEE as that protocol gains ubiquity in 10GbE server LOM and adapters.

In summary, RoCEE is unproven and its deployment faces significant hurdles including standardization and application and upper layer adoption. In addition, RoCEE is dependent on the deployment of 10GbE CEE infrastructure; currently only one vendor (Cisco) offers CEE switches, which are at relatively high price points.

About the Author

Saqib Jang is founder and principal at Margalla Communications, a Woodside, Calif.-based strategic and technical marketing consulting firm focused on storage and server networking.

This article is an excerpt from a Margalla Communications white paper entitled High-speed Remote Direct Memory Access (RDMA) Networking for HPC: Comparative Review of 10GbE iWARP and InfiniBand available at www.margallacomm.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This