Remote Direct Memory Access Networking for HPC: Comparative Review of 10GbE iWARP and InfiniBand

By Saqib Jang

February 24, 2010

The Rise of HPC Cluster Computing

While the HPC market is expected to experience a revenue dip in 2009, growth is expected to resume in 2010 and remain a bright spot in the overall IT market. The most important feature of the HPC growth trend is that it will continue to be fueled primarily by purchases of Linux cluster systems priced under $250,000. Cluster computing systems, separate compute nodes built from standard component technologies have caused disruptive changes in the HPC market.

As the component technologies of cluster systems have improved and buyers have become more confident running cluster systems, they have inevitably redirected capital once earmarked for large custom systems to larger cluster systems. These much larger clusters, often with thousands of processors, present opportunities for huge performance gains through improved parallel performance resulting in an overall higher order of magnitude return-on-investment (ROI). While algorithm and application tuning is often required to obtain these benefits, so often are cost, bandwidth, message rate, and latency of cluster interconnects.

One consequence of the range of requirements for cluster networking is that the leading interconnects in HPC are Gigabit Ethernet (which is based on Ethernet networking standard) and InfiniBand (delivering upwards of 10X performance vs. GbE). Both show significant deployment in HPC. The latest TOP500 list of HPC systems has 259 Gigabit Ethernet-based deployments compared to 181 InfiniBand-connected systems. The deployment of 10 Gigabit Ethernet (10GbE) cluster networking is emerging at this point. The price of this interconnect has been falling as the volume of its shipments grow. This growth is based on a combination of its 10X performance over GbE along with the ease of deployment due to its Ethernet heritage positions it for a bright future as a cluster interconnect.

As cluster systems have grown, so has the total amount of data in play in the average parallel HPC application. This has significant implications for HPC storage systems. Storage systems need to have the best possible bandwidth and latency characteristics. HPC storage systems have themselves become increasingly clustered and parallel as well as network-attached and accessible from all nodes on the cluster through the interconnect. In this context, the demand for interconnect solutions that supports a converged storage and cluster interconnect fabric is expected to grow significantly.

10GbE iWARP Overview and Value Proposition

For years, Ethernet has been the de facto standard LAN for connecting users to each other and to network resources. Ethernet sales volumes make it unquestionably the most cost-effective datacenter fabric to deploy and maintain. The latest generation of Ethernet, 10 Gigabit Ethernet (10GbE), offers a 10 Gbps data rate, which simplifies growth for existing data networking applications while removing the bandwidth barriers to deployment for highest-performance HPC clustering and storage networking.

  • 10GbE end-to-end performance now compares very favorably with that of more specialized datacenter interconnects, which eliminates performance as a drawback to the adoption of an Ethernet unified data center fabric.
     
  • Off-loading cluster and storage protocol processing from the central CPU to intelligent 10GbE NIC can also improve the power efficiency of end stations because off-load ASIC processors are generally considerably more power-efficient in executing protocol workloads.
     
  • The value of implementing TCP/IP protocol processing in silicon at 10 Gbps data rates is clear. Effectively, such approaches have the potential of reducing the relative bandwidth and latency overhead effect of TCP/IP protocol processing to zero.

Achieving 10GbE performance for latency-sensitive HPC communications has required solving Ethernet’s long-standing overhead problems; problems that, in slower Ethernet generations, were adequately overcome by steadily increasing CPU clock speeds.

Enter 10GbE iWARP

The iWARP extensions to TCP/IP focus on eliminating the three major sources of networking overhead — transport (TCP/IP) processing, intermediate buffer copies, and application context switches — that collectively account for nearly 100 percent of CPU overhead related to networking. Specifically, iWARP implements a number of mechanisms to provide a low-latency means of passing RDMA over Ethernet.

The iWARP extensions utilize advanced techniques to reduce CPU overhead, memory bandwidth utilization, and latency by a combination of offloading TCP/IP processing from the CPU, eliminating unnecessary buffering, and dramatically reducing expensive operating system calls and context switches — moving data management and network protocol processing to an accelerated RDMA over TCP/IP NIC (or R-NIC) 10 Gigabit Ethernet adapter.

R-NICs can reduce CPU utilization for 10 Gbps transfers to less than 10 percent and can reduce the host component of end-to-end latency to as little as 5–10 microseconds. High port-count 10GbE switches are available, which delivers HPC-class latency performance within 100’s of nanoseconds.

InfiniBand Overview and Value Proposition

InfiniBand is an I/O architecture designed to increase the communication speed between CPUs, devices within servers and subsystems located throughout a network. The original goal behind the release of the InfiniBand specification by the InfiniBand Trade Association was to address the mismatch between the speed of CPUs and the PCI I/O bus, as well as other deficiencies of the PCI bus, including bus sharing, scalability, and fault tolerance.

InfiniBand is a point-to-point, switched I/O fabric architecture. Both devices at each end of a link have full access to the communication path. To go beyond a point and traverse the network, switches come into play. By adding switches, multiple points can be interconnected to create a fabric. As more switches are added to a network, aggregated bandwidth of the fabric increases. By adding multiple paths between devices, switches also provide a greater level of redundancy.

A single InfiniBand link supports 2.5 Gbps in each direction per connection. InfiniBand supports double (DDR) and quad data rate (QDR) speeds, for 5 Gbps or 10 Gbps respectively, at the same data-clock rate. InfiniBand links use 8B/10B encoding — every 10 bits sent carry 8 bits of data, which meansthe net data transmission rate is four-fifths the raw rate. Thus single, double, and quad data rates carry 2, 4, or 8 Gbps respectively.

A quad-rate 12X link therefore carries 120 Gbps raw, or 96 Gbps of useful data. At present, most systems use 4X 10 Gbps (SDR), 20 Gbps (DDR) or 40 Gbps (QDR) connections. However, InfiniBand QDR performance is bounded by the 26 Gbps PCIe Gen2 throughput limitation.

Latency performance of InfiniBand SDR ad DDR switch chips is around 200 nanoseconds. InfiniBand Host Channel Adapters (HCAs) are rated 1-3 microseconds (although effective application-level performance is a different matter).

High-end clustering architectures have provided the main opportunity for InfiniBand deployment. Using the InfiniBand fabric versus Gigabit Ethernet as the cluster inter-process communications (IPC) interconnect typically boosts cluster performance and scalability while improving application response times. InfiniBand also provides exceptional scalability and failover in comparison to Gigabit Ethernet. In short, compared to Gigabit Ethernet, InfiniBand stands out in providing the mechanisms necessary to support the demanding requirements of high-end clustering.

iWARP and InfiniBand Comparative Review

As far as its compatibility with existing datacenter infrastructure, because it is layered on top of TCP, iWARP is fully compatible with existing Ethernet switching equipment that is able to process iWARP traffic out-of-the-box. In comparison, deploying InfiniBand requires environments where two separate network infrastructures are installed and managed as well as specialized InfiniBand to Ethernet gateways for bridging between the two infrastructures.

10GbE infrastructure is available from a range of incumbent and startup vendors. Intel, Broadcom, and Chelsio provide 10GbE iWARP adapters, while 10GbE switches are available from a broad range of vendors including Cisco, HP, IBM, BLADE Network Technologies, Extreme, Force10, Arista, and Voltaire. InfiniBand host channel adapter and switch silicon is only available from two vendors (Mellanox and QLogic), who in turn have signed up a number of OEMs to carry adapter and switching systems.

Both interconnects offer equivalent capabilities for supporting operating systems. The OpenFabrics software stack that is fully integrated into the flavors of Linux distributed by Novell and Red Hat fully supports both 10GbE iWARP and InfiniBand.

10GbE iWARP leverages its heritage to also support acceleration of emerging Ethernet-based storage protocols, including file storage (NFS-RDMA), which is fully supported by the Linux OFED stack. In addition, the Linux OFED stack also enables 10GbE iWARP to out-of-the-box support Lustre networking (LNET). In addition, 10GbE iWARP adapters can also provide concurrent, native support for standard Ethernet protocols such as NFS, CIFS, and iSCSI. In comparison, InfiniBand has had minimal deployments for server-to-storage communications, whether for file or block storage.

Regarding pricing, major server vendors are starting to add a 10 Gigabit Ethernet chip to the motherboard-known as LAN-on-Motherboard (LOM). NIC prices will continue to drop as LOM technology lets NIC vendors reach the high volumes they need to keep costs down, which in turn will drive switch port prices down as well. InfiniBand, on the other hand, has reached a mature market position and, consequently, reductions in the pricing of InfiniBand products will be relatively gradual.

Large-scale clusters built using 10GbE iWARP technology and high port-count 10Gbe switches are gaining ground, and cluster scalability is no longer viewed as inhibiting 10Gbe deployment. InfiniBand technology is an established interconnect for building large node-count clusters.

From a roadmap standpoint, the Ethernet market is moving forward aggressively to develop and implement 40G and 100G-based standards. It is expected that the standard for these versions of Ethernet will be ratified during 2010 and initial implementations based on these standards will be shipping from a range of vendors in the blade server and Ethernet networking switch markets within the next 2 to 3 years.

Converged Enhanced Ethernet

The IEEE has been developing standards collectively referred to as “Data Center Bridging” (DCB) or “Converged Enhanced Ethernet” (CEE) This refers to high speed Ethernet (currently 10 Gbps, with a clear path to 40 Gbps and 100 Gbps), plus a number of new features. The main new features are:

  • Priority-Based Flow Control (802.1Qbb), sometimes called “per-priority pause”
  • Enhanced Transmission Selection (802.1Qaz)
  • Congestion Notification (802.1Qau)

The first two features allow splitting an Ethernet link into multiple “virtual links” that operate independently — bandwidth can be reserved for a given virtual link, and by having per-virtual-link flow control, CEE can ensure that certain traffic classes do not overrun their buffers thus avoiding dropping packets. This congestion notification capability means that we can tell senders to slow down to avoid congestion spreading caused by that flow control.

CEE was developed primarily for use in Fibre Channel over Ethernet (FCoE). FC requires a very reliable network — it simply does not work if packets are dropped because of congestion — and, so, CEE provides the ability to segregate FCoE traffic on top of a “no drop” virtual link.

The roadmap initiatives in the InfiniBand space consist of QDR, EDR (2011), and RDMA over CEE. However, these roadmap initiatives suffer from the same limitations that have been a traditional challenge for InfiniBand, namely, limited vendor support.

RoCEE Overview and Value Proposition

Mellanox, the leader in the InfiniBand market, is behind the emerging RDMA over Converged Enhanced Ethernet (RoCEE) protocol proposal. RoCEE is designed to allow the deployment of RDMA semantics on Converged Enhanced Ethernet fabric by running the IB transport protocol using Ethernet frames.

Mellanox’s RoCEE proposal was motivated in order to create a protocol analogous to FCoE for Ethernet-based cluster networking. In other words, to take the InfiniBand transport layer and package it into Ethernet frames, instead of using the iWARP protocol for Ethernet-based high-performance cluster networking. But there are a number of challenges associated with this proposal:

First, one of the major motivations behind the RoCEE proposal is that it is the fastest path forward for an Ethernet-based alternative to InfiniBand. However, this ignores the fact that iWARP adapters are already shipping from multiple vendors, including Intel, Chelsio, and Broadcom. In addition, iWARP will automatically leverage the performance benefits of CEE as support for it will be ubiquitous in all 10GbE server adapter and LOM implementations, iWARP and non-iWARP alike.

Second, the idea that an InfiniBand over Ethernet (IBoE) specification will be quick or easy to develop flies in the face of the experience with FcoE. While FCoE sounded simple in concept, it turns out that the standards work took at least three years. In comparison, IBoE is more complicated to specify, and fewer resources are available for it, so a realistic view is that a true standard is very far away.

Last, RoCEE proponents point to the performance overhead challenges related to iWARP based on the TCP/IP protocol. However, this does not take into account the efficiency of silicon-based implementations of 10 Gbps TCP/IP. In addition, iWARP is also positioned to automatically take advantage of CEE as that protocol gains ubiquity in 10GbE server LOM and adapters.

In summary, RoCEE is unproven and its deployment faces significant hurdles including standardization and application and upper layer adoption. In addition, RoCEE is dependent on the deployment of 10GbE CEE infrastructure; currently only one vendor (Cisco) offers CEE switches, which are at relatively high price points.

About the Author

Saqib Jang is founder and principal at Margalla Communications, a Woodside, Calif.-based strategic and technical marketing consulting firm focused on storage and server networking.

This article is an excerpt from a Margalla Communications white paper entitled High-speed Remote Direct Memory Access (RDMA) Networking for HPC: Comparative Review of 10GbE iWARP and InfiniBand available at www.margallacomm.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U.S. Entity List bars U.S. firms from supplying key technolog Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPOD Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire