IBM Invents Short-Cut to Assessing Data Quality

By Michael Feldman

February 25, 2010

In what IBM is characterizing as a “breakthrough,” researchers have developed an algorithm that cuts the computational costs of assessing data quality by two orders of magnitude. The idea is to bring uncertainty quantification within reach of present-day supercomputers and even much more computationally-modest machines. The new algorithm has potentially far-reaching applicability, extending to nearly all types of analytics applications as well as scientific modeling and simulation.

The development of the algorithm was performed at IBM Research – Zurich and was presented on Thursday at the Society for Industrial and Applied Mathematics conference in Seattle. The Zurich team has been working on the software for the last year-and-a-half and they were able to patent it at the end of 2009, prior to publishing the results. The announcement this week followed a demonstration on JuGene, the Blue Gene/P system at the Jülich Supercomputing Center in Germany.

In that experiment, 72 Blue Gene racks were used to validate nine terabytes of data in less than 20 minutes. According to IBM researchers, using conventional techniques, that analysis would have consumed more than a day, and in the process, used 100 times as much energy. A sustained performance of 730 teraflops, representing 73 percent of theoretical peak, was demonstrated on the Blue Gene/P machine, and similar or even better efficiencies would be expected on smaller clusters and workstations.

The impetus behind this work is the flood of data that is fed to computers to solve real-world problems — everything from stock portfolio management to computational fluid dynamics. The data can be generated from physical sources, like financial market feeds, weather sensors, electrical grid measurement devices, and Internet streams, as well as from synthetic sources like computer models. “Essentially we live in an ocean of bits and bytes,” says Costas Bekas of IBM Research – Zurich.

The idea, of course, is to employ computers to transform all this raw data into valuable knowledge. But before that, you have to figure out how good the data is, so that the results are trustworthy. And since the collection and generation of all this information is never error-free, one must find a way to quantify all the noise and anomalies in the data.

Statistical techniques to characterize data quality have been around for a while and come under the general term uncertainty quantification, or UQ, for short. There are a number of methods employed for UQ analysis, including the well-known Monte Carlo technique. But one of the most powerful ones uses something called inverse covariance matrix analysis. The problem with this method is that as data sizes grow, the computational cost becomes impractical, even for the most powerful systems. For example, Bekas says a sample of one million data samples would require an exaflop of compute power. That’s roughly 1,000 times the performance of the top petaflop supercomputing systems that exist today. To compensate, people have been manually “remodeling” the data and reducing the size of the problem, but this introduces the element of human bias into the analysis.

The overarching goal of the research was to make UQ practical, not just for elite scientists on supercomputers, but for average users on computing clusters and even personal computers. And because they wanted to cover the whole range of hardware platforms, they needed to design the algorithm so that it would be highly scalable as well as fault tolerant.

The solution the IBM’ers came up with was to replace the inverse covariance matrix method with one using stochastic estimation and iterative refinement. This enabled the researchers to cast the problem as a linear system. “The key is that the number of linear systems that we solve is small,” explains Bekas. “So if you have, say, one million data samples, then you only have to solve 100 linear systems.”

According to Bekas, this model not only enabled them to parallelize the technique, but to reduce the computational cost by a factor of 100. In addition, the algorithm employs a mixed precision scheme such that the main computation can take place in single precision (or even lower), but generate results in double precision (or even higher). While most modern CPUs can’t take advantage of this particular trick, computational accelerators, like Cell processors, GPUs, and presumably even FPGAs, can use this feature to optimal effect.

Fault tolerance is a by-product of the stochastic estimation model. “If for example something goes wrong in your machine while it is solving one of the linear systems, you can safely ignore it and you can go on to the next one,” says Bekas. “On the other hand, if you were to do full matrix inversion [and] something went wrong at the end of a very large matrix calculation, then your data is destroyed.” The technique maintains accuracies of three, four, or even five digits, which according to him, far exceeds what is required for applications.

Now that IBM’s intellectual property related to the algorithm has been patented and the technology is out of the experimental stage, the next step is to begin commercialization. There is no dearth of potential applications: weather forecasting, supply chain management, nuclear weapons simulation, astrophysics, magnetic resonance imaging, and all kinds of business intelligence — essentially any analytics or modeling application where data quality is a driving issue. Perhaps the lowest-hanging fruit is financial portfolio analysis, where exposure to risk is at the very heart of the application. IBM has a Business Analytics and Optimization group within their consulting organization ready to start client engagements.

“You’d be surprised to see how many different disciplines rely on the same basic mathematical problems,” says Bekas. “And this uncertainty quantification is one of them.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This