Multicore Watershed

By Michael Feldman

March 4, 2010

As many industry watchers have noted, including me, the next few months will see the introduction of a raft of new x86 server chips that offer between 6 and 12 cores. Although both Intel and AMD have already fielded 6-core processors (“Dunnington” for Intel and “Istanbul” for AMD), the new Xeon and Opterons will set some new expectations in the x86 server chip arena.

For one thing, the “multi” in multicore is about to become a lot more meaningful. Instead of simply doubling the core count, which was the model in the past, when the industry moved en masse from uni-core to dual-core to quad-core, we’re now going to see processors with 2, 4, 6, 8, and 12 cores filling different niches in the server space.

This month, Intel is expected to roll out its 6-core Westmere EP processor aimed at dual-socket platforms. For 4-socket systems and above, the 8-core Nehalem EX is expected before mid-year. Intel is also planning on a faster clocked 6-core Nehalem EX variant, which is targeted especially for the HPC market. Meanwhile, AMD is set to launch its 8- and 12-core Magny Cours Opterons at about the same time as the first Westmere chips launch. Magny-Cours, though, will support both 2- and 4-socket servers.

Given that diversity, server makers will have a lot more choice on how they want to balance FLOPs with memory capacity, memory bandwidth, and I/O in different product niches. This is especially true for HPC, where the memory wall problem is particularly prominent. In fact, in this post-quad-core era it’s worth remembering the 2009 Sandia study that suggested performance would drop for certain data-intensive apps when the underlying platform moved beyond eight cores:

A Sandia team simulated key algorithms for deriving knowledge from large data sets. The simulations show a significant increase in speed going from two to four multicores, but an insignificant increase from four to eight multicores. Exceeding eight multicores causes a decrease in speed. Sixteen multicores perform barely as well as two, and after that, a steep decline is registered as more cores are added.

That suggests that the most likely consequence of core proliferation will be greater emphasis on memory capacity and bandwidth per node. As processors have added performance, the memory bytes per flop and bytes/sec per flop ratios have been dropping, leaving a lot of unused performance on the chip. To counter that, we’re starting to see a trend back to big-node, shared memory systems. Frankly, most of the commercial solutions for x86-based systems are more focused on increasing memory capacity, rather than bandwidth, given that the latter is far more difficult to accomplish without design help at the CPU level. Nevertheless, increasing memory can indirectly help the bandwidth issue, since aggregate access increases as you add more RAM.

The move to bigger memory machines has already begun. NCSA is getting reading to install Ember, a large-scale shared memory SGI UV Altix super. That machine is going to be used for computational chemistry as well as solid and fluid dynamics research. ScaleMP, which uses its vSMP technology to concoct virtual SMPs, has had a number of wins lately, include the Gordon cluster at the San Diego Supercomputing Center. Although that machine is best known for its use of flash memory, the vSMP technology is used to build “supernodes” that can access as much as 2 TB of RAM. Relative newcomer 3Leaf Systems recently announced Florida State University will deploy the company’s “fabric computing” technology to aggregate multiple Opteron-based nodes into virtual shared memory servers. Finally, although not aimed at HPC, IBM just unveiled its eX5 servers, which allows users to expand RAM to 1.5 TB per two-socket machine.

The burgeoning core count also raises a sort of existential question for a lot of HPC users. In a Linux Magazine article, Douglas Eadline noted that since more than half of HPC apps use 32 cores or fewer (according to both IDC research and a Cluster Monkey survey), it’s possible low-end HPC work will migrate from clusters to single nodes. In that case, multi-socketed workstations could end up replacing traditional clusters.

Well, the sweet spot of such workstations is still dual-socket systems (as it is for servers), so we’ll really have to wait until 16-core chips hit the streets next year to answer that question. On the other hand, considering that the latest GPUs from AMD and NVIDIA (especially the upcoming Fermi processors) can take the place of multiple high-end CPUs for a range of HPC workloads, we may not need dozens of x86 cores to push a lot of low-end supercomputing onto the desktop. In fact, the presence of general-purpose GPUs makes the use of double-digit core counts somewhat superfluous in these cases, unless someone can figure out a way match up graphics processors with CPU cores.

One final thought. When considering how multicore CPUs are distorting system balance, it’s tempting to get hung up on efficiency metrics and maximizing hardware resources. But as John Gustafson has reminded us: “System balance is not about bytes per flops/s, mass storage/RAM, or any such ratios. It never has been. System balance means adding something to the design such that the percent improvement in value (performance, reliability, or whatever) is greater than the percent improvement in the total cost of ownership. A system is perfectly balanced when no further such improvements are possible.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This