Intel Ups Performance Ante with Westmere Server Chips

By Michael Feldman

March 16, 2010

Right on schedule, Intel has launched its Xeon 5600 processors, codenamed “Westmere EP.” The 5600 represents the 32nm sequel to the Xeon 5500 (Nehalem EP) for dual-socket servers. Intel is touting better performance and energy efficiency, along with new security features, as the big selling points of the new Xeons.

For the HPC crowd, the performance improvements are the big story. Thanks in large part to the 32nm transistor size, Intel was able to incorporate six cores and 12 MB of L3 cache on a single die — a 50 percent increase compared to the Xeon 5500 parts. According to Intel, that translated into a 20 to 60 percent boost in application performance and 40 percent better performance per watt.

Using the high performance Linpack benchmark, Intel is reporting a 61 percent improvement for a 6-core 5600 compared its 4-core Xeon 5500 predecessor (146 gigaflops versus 91 gigaflops). You might be wondering how this was accomplished, given that the 5600 comes with only 50 percent more cores and cache. It turns out that Intel’s comparison was based on its two top-of-the line Xeon chips from each processor family. The 146 gigaflops result was delivered by a X5680 processor, which runs a 3.33 GHz and has a TDP of 130 watts, while the 91 gigaflops mark was turned in by the X5570 processor, which runs at 2.93 GHz and has a TDP of 95 watts. Correcting for clock speed, the 5600 Linpack would be something closer to 128 gigaflops, representing a still-respectable 41 percent boost.

Intel also reported performance improvements across a range of technical HPC workloads. These include a 20 percent boost on memory bandwidth (using Stream-MP), a 21 percent average improvement with a number of CAE codes, a 44 percent average improvement for life science codes, and a 63 percent improvement using a Black Scholes financial benchmark. These results also reflect the same 3.33/2.93 GHz clock speed bias discussed in the Linpack test, so your mileage may vary.

Looking at the performance per watt metric, the new 5600 chips also have a clear edge. An apples-to-apples comparison of the X5570 (2.93 GHz, 95 watt) and x5670 (2.93 GHz, 95 watts), has the latter chip delivering 40 percent more performance per watt. That’s to be expected since two extra cores are available on the X5670 to do extra work.

Intel is also offering low-power 40 and 60 watt versions of the 5600 alongside the mainstream 80, 95, and 130 watt offerings. These low-power versions would be especially useful where energy consumption, rather than performance, is the driving factor. For example, a 60 watt L5640 matches the raw performance of a 95 watt X5570, potentially saving 30 percent in power consumption. Intel is even offering a 30 watt L3406, aimed at the single-processor microserver segment. Other power-saving goodies that come with the 5600 include a more efficient Turbo Boost and memory power management facility, automated low power states for six cores, and support for lower power DDR3 memory.

The Xeon 5600 parts are socket-compatible with the 5500 processors and can use the same chipsets, making a smooth upgrade path for system OEMs. Like their 5500 predecessors, the 5600s support DDR3 memory to the tune of three memory channels per socket. Practically speaking, that means two cores share a memory channel when all six cores are running full blast.

The enterprise market will be pleased by the new on-chip security features in the 5600 architecture. First, there is the new AES instructions for accelerating database encryption, whole disk encryption and secure internet transactions. The 5600 also offers what Intel is calling Trusted Execution Technology (TXT). TXT can be used to prevent the insertion of malicious VM software at bootup in a virtualized cloud computing environment.

Although the 5600 family will bring Intel into the mainstream six-core server market, the company is offering new four-core parts as well. In fact, the fastest clock is owned by the X5677, a quad-core processor that tops out at 3.46 GHz. These top-of-the-line four-core versions might find a happy home with many HPC users, in particular where single-threaded application performance is paramount. This would be especially true for workloads that tend to be memory-bound, since in this case more cores might actually drag down performance by incurring processing overhead while waiting for a memory channel to open up.

Intel’s marketing strategy for the Xeon 5600 is not that different from its 5500 sales pitch: improved processor efficiencies generate quick payback on the investment. For the 5600, the claim is that you can replace 15 racks of single-core Xeons with a single rack of the new chips, that is, as long as you don’t need any more performance. Intel is touting a five-month payback for this performance-neutral upgrade.

On the other hand, if you need 15 times the performance, you can do a 1:1 replacement of your single-core servers and still realize about eight percent in energy savings. But since software support and server warranty costs dominate maintenance expenses, any energy savings might get swallowed up by these other costs.

Intel says it is keeping the prices on the 5600 processors in line with the Xeon 5500s, although the new processor series spans a wider range of offerings. At the low end, you have the L3406, a 30 watt 2.26 GHz part with four cores just 4 MB of L3. It goes for just $189. At the top end are the six-core X5680 and the four-core X5677, both of which are offered at $1,663. Prices quoted are in quantities of 1,000.
 
In conjunction with Intel’s launch, a number of HPC OEMs are also announcing new systems based on the Xeon 5600 series. For example, Cray announced its CX1 line of deskside machines will now come with the new chips. SGI is also incorporating the new Xeons into its portfolio, including the Altix ICE clusters, the InfiniteStorage servers, and the Octane III personal super. SGI will also use the new chips in its just-announced Origin 400 workgroup blade solution. IBM, HP and Dell are likewise rolling out new x86 servers based on the 5600 processors.

AMD is looking to trump Intel’s latest Xeon offerings with its new Magny-Cours 6100 series Opteron processors, which are set to launch at the end of the month. The new Opterons come in 8- and 12-core flavors and are debuting alongside AMD’s new G34 chipset. Although the Opterons lack the HyperThreading technology of the Xeons, the additional physical cores and fourth memory channel should make up for this. Also unlike the 5600 architecture, the Opteron 6100 support both 2-socket and 4-socket systems, giving server makers additional design flexibility. In any case, the x86 rivalry is quickly heating up as the two chipmakers battle for market share in 2010.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This