Cray Adds CX1000 to HPC Portfolio

By Michael Feldman

March 24, 2010

Cray has introduced a new line of entry- and mid-level HPC systems, making good on its promise to fill the gap between its CX1 deskside systems and XT mini-supers. Called the CX1000, the new machine makes use of the latest Intel Xeon processors and, from a performance standpoint, picks up where the CX1 leaves off. Cray intends to leverage its existing CX1 ecosystem of more than 40 channel partners to sell and support the new product line.

While conceptually similar to the blade design of the CX1 deskside machine, the CX1000 is delivered in a more traditional chassis form factor and is designed to be installed in the typical datacenter environment, rather than the office. The CX1 theme of making high performance computing more a turnkey kind of experience is the same though. Like its CX1 predecessor, the CX1000 comes preinstalled with an integrated OS/cluster management stack, in this case, either Microsoft Windows HPC Server 2008 or a combo of Linux Red Hat plus the Cray Cluster Manager. Configurations of one to four chassis can be built, with prices that ranges from under $100,000 for a minimally-configured enclosure, up to around $700,000 for a full cabinet with high-end options.

Cray’s rationale for the CX1000 line is two-fold: offer an upgrade path from its CX1 line and provide a choice of architectures that are currently most favored by HPC customers. CX1, you’ll remember, was positioned as a product that could transition technical workstation users into the world of HPC mini-clusters. According to Ian Miller, Cray’s senior VP of the Productivity Solutions Group and Marketing, it just made sense to expand the CX family beyond the 8-blade limit of the CX1. According to him, the CX1000 will meet the needs of customers looking for additional computational power, but who don’t require the supercomputing capability of an XT machine.

To cover its architectural bases, Cray offers three models: a scale-up cluster (CX1000-C), a GPU-accelerated cluster (CX1000-G), and a scale-out SMP-type machine (CX1000-S). We’ll take these in order.

The CX1000-C fills the role of the standard entry-level cluster for distributed memory-style HPC. The C model comes in a 7U chassis that can house up to 16 dual-socket blades, where the sockets are populated by Intel Xeon 5600 series (“Westmere EP”) parts. Processor choices include both the 6-core and 4-core versions, but all running at under 3 GHz. (The top-of-the-line 130 watt Westmere parts are not an option here since these would tend to run too hot for the dense blade design.) QDR InfiniBand is used for the system interconnect, with an optional Ethernet switch available for connecting to an external network.

The CX1000-G is the GPU-accelerated variation of the C model. The double wide blades pair two Westmere EP chips with two NVIDIA Tesla modules, with a dedicated I/O hub for each CPU-GPU pair. The description on the Cray Web site specifies the current M1060 Tesla module, but since NVIDIA is expected to ship the new Fermi products in Q2, most users will probably hold out for souped-up GPUs. Since the blades are double wide, only eight blades will fit in the 7U chassis. That’s nothing to scoff at though. With Fermi parts, a fully-populated enclosure should deliver in the neighborhood of 10 double precision teraflops.

The CX1000-S is the odd one out. This model implements a mid-range SMP machine and is designed for non-distributed, big memory applications, such as electronic design automation (EDA). Most of the specs for the CX1000-S are still forthcoming, but Cray has divulged each node can house up to 128 cores and will make use of Intel’s QuickPath Interconnect (QPI) technology. That almost certainly means the CX1000-S will be using Intel’s 8-core Nehalem EX chips, which are expected to be released on March 30. Since Nehalem EX only supports eight sockets natively, Cray apparently has designed or repurposed a custom node controller to make a 16-socket (128 cores) machine possible.

As an aside, the introduction of the Westmere EP processor and the upcoming Nehalem EX and Fermi parts should encourage other vendors to expand their HPC portfolios as well. Thanks to the latter two chips in particular, SMP and GPU-accelerated computing now look much more attractive from a price-performance perspective than they ever have in the past. System makers should be able to build relatively-powerful SMP machines and GPU clusters for well under a million dollars, as Cray has done with the CX1000.

It’s not just about adding new platforms, though. Miller says it’s possible to mix and match the different CX1000 models into a single cabinet, depending on application needs. Both the Cray Cluster Manager (based on Platform Computing LSF technology) and Windows HPC Server are capable of provisioning these types of heterogenous environments. Dual booting is also supported, so Windows and Linux apps can be accommodated in the same system. In conjunction with that capability, Cray is working with ISVs to help port popular technical computing software onto these platforms so that customers can bring their codes with them. The ultimate goal, says Miller, is to “create a package for entry- to mid-range customers that helps them get productive quickly.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This