Cray Adds CX1000 to HPC Portfolio

By Michael Feldman

March 24, 2010

Cray has introduced a new line of entry- and mid-level HPC systems, making good on its promise to fill the gap between its CX1 deskside systems and XT mini-supers. Called the CX1000, the new machine makes use of the latest Intel Xeon processors and, from a performance standpoint, picks up where the CX1 leaves off. Cray intends to leverage its existing CX1 ecosystem of more than 40 channel partners to sell and support the new product line.

While conceptually similar to the blade design of the CX1 deskside machine, the CX1000 is delivered in a more traditional chassis form factor and is designed to be installed in the typical datacenter environment, rather than the office. The CX1 theme of making high performance computing more a turnkey kind of experience is the same though. Like its CX1 predecessor, the CX1000 comes preinstalled with an integrated OS/cluster management stack, in this case, either Microsoft Windows HPC Server 2008 or a combo of Linux Red Hat plus the Cray Cluster Manager. Configurations of one to four chassis can be built, with prices that ranges from under $100,000 for a minimally-configured enclosure, up to around $700,000 for a full cabinet with high-end options.

Cray’s rationale for the CX1000 line is two-fold: offer an upgrade path from its CX1 line and provide a choice of architectures that are currently most favored by HPC customers. CX1, you’ll remember, was positioned as a product that could transition technical workstation users into the world of HPC mini-clusters. According to Ian Miller, Cray’s senior VP of the Productivity Solutions Group and Marketing, it just made sense to expand the CX family beyond the 8-blade limit of the CX1. According to him, the CX1000 will meet the needs of customers looking for additional computational power, but who don’t require the supercomputing capability of an XT machine.

To cover its architectural bases, Cray offers three models: a scale-up cluster (CX1000-C), a GPU-accelerated cluster (CX1000-G), and a scale-out SMP-type machine (CX1000-S). We’ll take these in order.

The CX1000-C fills the role of the standard entry-level cluster for distributed memory-style HPC. The C model comes in a 7U chassis that can house up to 16 dual-socket blades, where the sockets are populated by Intel Xeon 5600 series (“Westmere EP”) parts. Processor choices include both the 6-core and 4-core versions, but all running at under 3 GHz. (The top-of-the-line 130 watt Westmere parts are not an option here since these would tend to run too hot for the dense blade design.) QDR InfiniBand is used for the system interconnect, with an optional Ethernet switch available for connecting to an external network.

The CX1000-G is the GPU-accelerated variation of the C model. The double wide blades pair two Westmere EP chips with two NVIDIA Tesla modules, with a dedicated I/O hub for each CPU-GPU pair. The description on the Cray Web site specifies the current M1060 Tesla module, but since NVIDIA is expected to ship the new Fermi products in Q2, most users will probably hold out for souped-up GPUs. Since the blades are double wide, only eight blades will fit in the 7U chassis. That’s nothing to scoff at though. With Fermi parts, a fully-populated enclosure should deliver in the neighborhood of 10 double precision teraflops.

The CX1000-S is the odd one out. This model implements a mid-range SMP machine and is designed for non-distributed, big memory applications, such as electronic design automation (EDA). Most of the specs for the CX1000-S are still forthcoming, but Cray has divulged each node can house up to 128 cores and will make use of Intel’s QuickPath Interconnect (QPI) technology. That almost certainly means the CX1000-S will be using Intel’s 8-core Nehalem EX chips, which are expected to be released on March 30. Since Nehalem EX only supports eight sockets natively, Cray apparently has designed or repurposed a custom node controller to make a 16-socket (128 cores) machine possible.

As an aside, the introduction of the Westmere EP processor and the upcoming Nehalem EX and Fermi parts should encourage other vendors to expand their HPC portfolios as well. Thanks to the latter two chips in particular, SMP and GPU-accelerated computing now look much more attractive from a price-performance perspective than they ever have in the past. System makers should be able to build relatively-powerful SMP machines and GPU clusters for well under a million dollars, as Cray has done with the CX1000.

It’s not just about adding new platforms, though. Miller says it’s possible to mix and match the different CX1000 models into a single cabinet, depending on application needs. Both the Cray Cluster Manager (based on Platform Computing LSF technology) and Windows HPC Server are capable of provisioning these types of heterogenous environments. Dual booting is also supported, so Windows and Linux apps can be accommodated in the same system. In conjunction with that capability, Cray is working with ISVs to help port popular technical computing software onto these platforms so that customers can bring their codes with them. The ultimate goal, says Miller, is to “create a package for entry- to mid-range customers that helps them get productive quickly.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This