CPU March Madness Ends with Intel Nehalem EX Launch

By Michael Feldman

March 31, 2010

In what has become one of the busiest months ever for CPU introductions, Intel got its final say on Tuesday with the launch of its much-anticipated Nehalem EX. The new processor line encompasses the Xeon 7500 and 6500 series and will be the basis for shared memory SMP systems from dozens of server makers, including HPC stalwarts like Cray, SGI and Bull.

Nehalem EX’s biggest claim to fame is its 8-core footprint (a first for Intel), although 6-core and 4-core variants are also available. Since the new chip is intended for the “expandable” server segment, platforms from 2 to 8 sockets are supported natively, with the 4-socket server being the sweet spot. Custom implementations can expand the CPU count much further, however. SGI’s Altix UV 1000, for example, can aggregate as many as to 256 CPUs into a single cache coherent NUMA system.

Up to 16 memory slots can be attached per Nehalem EX socket for a maximum memory capacity of 1 TB on a 4-socket server. Four memory channels per socket should keep RAM access humming along nicely for most data-intensive applications. (If a better bandwidth-to-compute ratio needed, it’s probably worth looking into the 6-core and 4-core variants.) In any case, the large 24 MB of L3 cache should help data access in general, although, to be fair, only the top-bin parts provide that much L3. All the others come with either 18 MB or 12 MB.

For traditional enterprise applications, Nehalem EX is being positioned to bring mission-critical computing to the mainstream. Business intelligence, ERP, OLTP, and basically any heavy-duty enterprise application that fits into a virtualized server environment is fair game. Thanks to the impressive core count, memory support and new RAS features of the new chip, Intel is aiming is to grab market share from the RISC CPU-based SMP platforms that own much of this mission-critical space today.

For HPC, the EX silicon is positioned to support technical applications that can benefit from large amounts of shared memory, high CPU counts, or both. Here we’re talking about memory-intensive or I/O-intensive applications like CAE, EDA, life science simulations, seismic modeling codes — really any HPC workload that relies on large datasets and can benefit from a shared memory model. In a scale-out cluster environment, SMP servers also have a place since they reduce the number of nodes, and thus simplify cluster management, network infrastructure, and software costs.

While the Xeon 7500 series is the mainstream product line for Nehalem EX, the 6500 series is a 2-socket-only offshoot that was designed specifically for the HPC market. As such, the 6500 seems to be positioned halfway between the 7500 and the Xeon dual-socket CPUs, the 5500 and 5600 (Nehalem and Westmere EP, respectively). Basically the 6500 is aimed at lower cost dual-socket servers for applications that need larger memory footprints and higher bandwidth than EP-based platforms can muster.

For the time being, though, all the HPC platforms announced in conjunction with the EX launch are using 7500 silicon. Here’s a rundown of two of the more interesting systems introduced by HPC vendors this week.

SGI Adds Mini-SMP to Altix UV Stable

SGI’s use of Nehalem EX in its Altix UV (Ultraviolet) line, was well documented here in HPCwire and elsewhere, when the machines were previewed back in November 2009. The mid-range UV 100 (up to 96 CPU sockets and 6 TB of memory) and the top-of-the line UV 1000 (up to 256 sockets and 16 TB of memory) are based on SGI’s NUMAlink interconnect and custom chipset that extends the new CPU’s SMP capabilities significantly beyond its natural 8-socket limit. As such, the UV 100 and 1000 represent the largest x86-based SMP systems on the market today.

SGI decided to use the official Nehalem EX launch this week to introduce an entry-level Ultraviolet, the UV 10. It’s a 4-socket rackmount server with a top core count of 32 and maximum memory capacity of 512 GB (or 1 TB if you want to pay for outrageously expensive 16 GB DIMMs). Although, the new system is much smaller than the UV 100 and 1000 models, it comes with a lot of I/O expansion capacity. Ten PCIe I/O expansion slots are available, aimed principally at storage and networking cards. ”In terms of a quad-socket server, this is one of the highest-end options available in the marketplace,” said Geoffrey Noer, SGI’s senior director of product marketing

The UV10 doesn’t use the special chipset or NUMAlink interconnect of its larger siblings, but is still able to run the same software stack. The cut-down UV can be used as an application development machine for a larger UV production system or as a dedicated machine for bite-sized shared memory applications. SGI is also positioning the UV 10 as a service node for large conventional clusters, and is intending to sell them as such with the Altix ICE line. A list price of $33,250 is quoted for a mid-range configuration: 4 Xeon X7542 processors (6-core, 2.66 GHz), 32 GB of memory, and a SATA boot drive.

HLRN (Germany), CALMIP (France), the Institute of Low Temperature Science, Hokkaido (Japan), and the University of Tennessee (US) have UV 100 or 1000 machines on order, with the first systems slated to begin shipping in the second quarter of the year. The UV 10 systems are available immediately.

Cray and Bull Team Up on SMP Offering

Nehalem EX has also spurred Bull and Cray to jump on the SMP bandwagon. In this case though, it’s a two-for-one deal. Both vendors are using the same Bull-designed hardware for these systems and adding their own branding, software stacks, and custom support on top. The Cray-branded CX1000-S is under its new line of entry-level and midrange HPC machines that the company introduced last week, while the Bull supernodes fit into the bullx product line under its Extreme Computing portfolio announced last year. According to Ian Miller, senior vice president of the productivity solutions group and marketing at Cray, they very much liked the Bull technology. And since each company has more or less staked out different geographical territories — Bull in much of Europe and Cray everywhere else — the partnership just made sense to everyone involved.

The CX1000-S and bullx supernodes scale to 16 sockets (128 cores) and 1 TB of memory. Since 16 sockets is beyond the 8-processor reach of the Nehalem design, a custom-built node extension technology is employed. The implementation is somewhat unconventional though. Instead of an integrated node controller, the engineers opted for a custom “coherency switch” that aggregates up to four quad-socket Nehalem EX-based servers into one.

To back up a little, there are actually two variations of these machines: a compute node and a management node. In the Cray stable, the product set is split into the CX1000-SC (compute) and the CX1000-SM (management) models. The matching offerings from Bull are the S6010 and S6030.

The compute node is an L-shaped 1.5U box that houses up to four Nehalem EX chips hooked together via the native QPI links. Multiple boxes can be jigsawed together to construct larger SMP nodes (up to a maximum 6U, 16-socket configuration) via the aforementioned coherency switch.

The management node is a 3U box that comes with six PCIe slots, and in that sense is similar to the I/O-expandable UV 10. And like the SGI offering, this machine is meant to be used as a service node for a cluster or as a standalone compute node for apps that need lots of I/O capacity. It can also be expanded into larger SMP configurations via the magic coherency switch.

The SMP building block nodes will be shipping soon, but the coherency switch hardware won’t be available until later in the second quarter. Cray has quoted a starting price of under $100,000 for the CX1000 line in general. Pricing on the bullx supernodes is not public.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This