CPU March Madness Ends with Intel Nehalem EX Launch

By Michael Feldman

March 31, 2010

In what has become one of the busiest months ever for CPU introductions, Intel got its final say on Tuesday with the launch of its much-anticipated Nehalem EX. The new processor line encompasses the Xeon 7500 and 6500 series and will be the basis for shared memory SMP systems from dozens of server makers, including HPC stalwarts like Cray, SGI and Bull.

Nehalem EX’s biggest claim to fame is its 8-core footprint (a first for Intel), although 6-core and 4-core variants are also available. Since the new chip is intended for the “expandable” server segment, platforms from 2 to 8 sockets are supported natively, with the 4-socket server being the sweet spot. Custom implementations can expand the CPU count much further, however. SGI’s Altix UV 1000, for example, can aggregate as many as to 256 CPUs into a single cache coherent NUMA system.

Up to 16 memory slots can be attached per Nehalem EX socket for a maximum memory capacity of 1 TB on a 4-socket server. Four memory channels per socket should keep RAM access humming along nicely for most data-intensive applications. (If a better bandwidth-to-compute ratio needed, it’s probably worth looking into the 6-core and 4-core variants.) In any case, the large 24 MB of L3 cache should help data access in general, although, to be fair, only the top-bin parts provide that much L3. All the others come with either 18 MB or 12 MB.

For traditional enterprise applications, Nehalem EX is being positioned to bring mission-critical computing to the mainstream. Business intelligence, ERP, OLTP, and basically any heavy-duty enterprise application that fits into a virtualized server environment is fair game. Thanks to the impressive core count, memory support and new RAS features of the new chip, Intel is aiming is to grab market share from the RISC CPU-based SMP platforms that own much of this mission-critical space today.

For HPC, the EX silicon is positioned to support technical applications that can benefit from large amounts of shared memory, high CPU counts, or both. Here we’re talking about memory-intensive or I/O-intensive applications like CAE, EDA, life science simulations, seismic modeling codes — really any HPC workload that relies on large datasets and can benefit from a shared memory model. In a scale-out cluster environment, SMP servers also have a place since they reduce the number of nodes, and thus simplify cluster management, network infrastructure, and software costs.

While the Xeon 7500 series is the mainstream product line for Nehalem EX, the 6500 series is a 2-socket-only offshoot that was designed specifically for the HPC market. As such, the 6500 seems to be positioned halfway between the 7500 and the Xeon dual-socket CPUs, the 5500 and 5600 (Nehalem and Westmere EP, respectively). Basically the 6500 is aimed at lower cost dual-socket servers for applications that need larger memory footprints and higher bandwidth than EP-based platforms can muster.

For the time being, though, all the HPC platforms announced in conjunction with the EX launch are using 7500 silicon. Here’s a rundown of two of the more interesting systems introduced by HPC vendors this week.

SGI Adds Mini-SMP to Altix UV Stable

SGI’s use of Nehalem EX in its Altix UV (Ultraviolet) line, was well documented here in HPCwire and elsewhere, when the machines were previewed back in November 2009. The mid-range UV 100 (up to 96 CPU sockets and 6 TB of memory) and the top-of-the line UV 1000 (up to 256 sockets and 16 TB of memory) are based on SGI’s NUMAlink interconnect and custom chipset that extends the new CPU’s SMP capabilities significantly beyond its natural 8-socket limit. As such, the UV 100 and 1000 represent the largest x86-based SMP systems on the market today.

SGI decided to use the official Nehalem EX launch this week to introduce an entry-level Ultraviolet, the UV 10. It’s a 4-socket rackmount server with a top core count of 32 and maximum memory capacity of 512 GB (or 1 TB if you want to pay for outrageously expensive 16 GB DIMMs). Although, the new system is much smaller than the UV 100 and 1000 models, it comes with a lot of I/O expansion capacity. Ten PCIe I/O expansion slots are available, aimed principally at storage and networking cards. ”In terms of a quad-socket server, this is one of the highest-end options available in the marketplace,” said Geoffrey Noer, SGI’s senior director of product marketing

The UV10 doesn’t use the special chipset or NUMAlink interconnect of its larger siblings, but is still able to run the same software stack. The cut-down UV can be used as an application development machine for a larger UV production system or as a dedicated machine for bite-sized shared memory applications. SGI is also positioning the UV 10 as a service node for large conventional clusters, and is intending to sell them as such with the Altix ICE line. A list price of $33,250 is quoted for a mid-range configuration: 4 Xeon X7542 processors (6-core, 2.66 GHz), 32 GB of memory, and a SATA boot drive.

HLRN (Germany), CALMIP (France), the Institute of Low Temperature Science, Hokkaido (Japan), and the University of Tennessee (US) have UV 100 or 1000 machines on order, with the first systems slated to begin shipping in the second quarter of the year. The UV 10 systems are available immediately.

Cray and Bull Team Up on SMP Offering

Nehalem EX has also spurred Bull and Cray to jump on the SMP bandwagon. In this case though, it’s a two-for-one deal. Both vendors are using the same Bull-designed hardware for these systems and adding their own branding, software stacks, and custom support on top. The Cray-branded CX1000-S is under its new line of entry-level and midrange HPC machines that the company introduced last week, while the Bull supernodes fit into the bullx product line under its Extreme Computing portfolio announced last year. According to Ian Miller, senior vice president of the productivity solutions group and marketing at Cray, they very much liked the Bull technology. And since each company has more or less staked out different geographical territories — Bull in much of Europe and Cray everywhere else — the partnership just made sense to everyone involved.

The CX1000-S and bullx supernodes scale to 16 sockets (128 cores) and 1 TB of memory. Since 16 sockets is beyond the 8-processor reach of the Nehalem design, a custom-built node extension technology is employed. The implementation is somewhat unconventional though. Instead of an integrated node controller, the engineers opted for a custom “coherency switch” that aggregates up to four quad-socket Nehalem EX-based servers into one.

To back up a little, there are actually two variations of these machines: a compute node and a management node. In the Cray stable, the product set is split into the CX1000-SC (compute) and the CX1000-SM (management) models. The matching offerings from Bull are the S6010 and S6030.

The compute node is an L-shaped 1.5U box that houses up to four Nehalem EX chips hooked together via the native QPI links. Multiple boxes can be jigsawed together to construct larger SMP nodes (up to a maximum 6U, 16-socket configuration) via the aforementioned coherency switch.

The management node is a 3U box that comes with six PCIe slots, and in that sense is similar to the I/O-expandable UV 10. And like the SGI offering, this machine is meant to be used as a service node for a cluster or as a standalone compute node for apps that need lots of I/O capacity. It can also be expanded into larger SMP configurations via the magic coherency switch.

The SMP building block nodes will be shipping soon, but the coherency switch hardware won’t be available until later in the second quarter. Cray has quoted a starting price of under $100,000 for the CX1000 line in general. Pricing on the bullx supernodes is not public.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

  • arrow
  • Click Here for More Headlines
  • arrow
Share This