The Week in Review

By Tiffany Trader

April 8, 2010

Here is a collection of highlights from this week’s news stream as reported by HPCwire.

Supermicro Delivers Platinum Level Servers

Tokyo Institute of Technology Selected as Japan’s First CUDA Center of Excellence

Criterion HPS Unveils the Phantom Extreme Featuring Intel Xeon 5600 Processors

Woodward Taps IBM High Performance Cloud Services to Simulate Aircraft Component Design

GridCentric Announces Copper Cluster Management Software

NVIDIA Quadro GPUs Are Certified for AutoCAD

NCAR Orders Cray XT5 Supercomputer

RenderStream Announces Its VDAC 8-16 GPU Systems

Fixstars Releases ‘The OpenCL Programming Book’

Lomonosov Supercomputer Tops New Russian List of Most Powerful HPC Systems

AccelerEyes Upgrades Jacket Software for GPU Computing

New Computer Cluster Ups the Ante for Notre Dame Research

Xilinx Helps University of Regensburg Launch Most Power-Efficient Supercomputer

Pittsburgh Supercomputing Center Accelerates Scientific Research with SGI Altix UV

Software Design Technique Allows Programs to Run Faster

New AMAX Solutions Powered by NVIDIA Tesla 20-Series GPU

National Petascale Computing Facility Reaches Substantial Completion

Netezza TwinFin Appliance Used for Data-Intensive Computing Applications at PNNL

Memristor Technology Holds Intriguing Promise

HP Labs this week announced advances in memristor technology that could fundamentally change the design of computing. Memristors could be the key that enables computers to handle the ongoing information explosion, where data from a slew of devices, both explicit and embedded, threatens to overwhelm our current computing limits.

So what is a memristor? According to the HP Labs announcement, it’s “a resistor with memory that represents the fourth basic circuit.”

If you’re familiar with electronics, you will recognize the language. The trinity of fundamental components encompasses the resistor, the capacitor, and the inductor. In 1971, a University of California, Berkeley engineer, Leon Chua, predicted that there should be a fourth element: a memory resistor, or memristor. However, when memristors were first theorized 40 years ago, they were too big to be practical.

It was not until two years ago, in 2008, that researchers from HP Labs rediscovered Chu’s earlier work. With the reduction of transistor sizes, even more capabilities of the memristor were realized due to the way properties behave at nanoscale.

What makes the memristor different from other circuits is that when the voltage is turned off, it remembers its most recent resistance, and it retains this memory indefinitely until the voltage is turned on again. It would take many more paragraphs for a full explanation, but if you are interested, I suggest this easy-to-understand primer at IEEE Spectrum Web site.

One of the advantages of memristors is that they require less energy to operate, and are already being considered as a replacement to transistor-based flash memory.

Researchers predict that in five years, such chips, when stacked together, could be used to create handheld devices that offer ten times greater embedded memory than exists today, and could also be used to power supercomputers for digital rendering and genomic research applications at far greater speeds than Moore’s Law suggests is possible.

Memristors work more like human brains. In fact, Leon Chua explained that our “brains are made of memristors,” referring to the function of biological synapses.

And according to R. Stanley Williams, senior fellow and director of Information and Quantum Systems Lab at HP:

Memristive devices could change the standard paradigm of computing by enabling calculations to be performed in the chips where data is stored rather than in a specialized central processing unit. Thus, we anticipate the ability to make more compact and power-efficient computing systems well into the future, even after it is no longer possible to make transistors smaller via the traditional Moore’s Law approach.

The promises this technology offers sound almost to good to be true. If even half of what is promised holds true, than this will go down in history as one of the great breakthroughs in computer technology.

48-Core Intel Processor for Educational Purposes Only

Intel announced plans to ship “limited quantities” of computers with an experimental 48-core processor to researchers by the middle of the year. The 48-core processors will be shipped mainly to academic institutions, an Intel rep said during an event in New York on Wednesday. And while the chip will probably not become commercially available, certain features may make their way into future products.

PCWorld reported:

The 48-core chip operates at about the clock speed of Atom-based chips, said Christopher Anderson, an engineer with Intel Labs. Intel’s latest Atom chips are power-efficient, are targeted at netbooks and small desktops, and run at clock speeds between 1.66GHz and 1.83GHz. The 48-core processor, built on a mesh architecture, could lead to a massive performance boost when all the chips communicate with each other, Anderson said.

The new processor reportedly has a power draw between 25-125 watts, and cores can be powered off to save energy or reduce clock speed. The chip touts better on-die power management capabilities than current multicore chips and comes with power-management software to help lower energy consumption depending on performance requirements.

During the Wednesday event, researchers demonstrated the processor’s advanced power management features. While running a financial application, sets of cores were deactivated and the power consumption went from 74 watts to 25 watts in under a second.

The new 48-core chip is based on the 80-core Teraflop prototype created in 2007 by Intel’s Tera-scale Computing Research Program. And that chip is a runner-up to the 48-core “Single-chip Cloud Computer” announced in December 2009, also a product of the Tera-scale Computing Research Program.

Those processors, however, were only prototypes and were never released into the wild. However, the 48-core chips announced this week are almost ready to leave the research nest, and will be released if not into the fierce corporate jungles at least into the relatively tamer academic habitat.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This