The Week in Review

By Tiffany Trader

April 8, 2010

Here is a collection of highlights from this week’s news stream as reported by HPCwire.

Supermicro Delivers Platinum Level Servers

Tokyo Institute of Technology Selected as Japan’s First CUDA Center of Excellence

Criterion HPS Unveils the Phantom Extreme Featuring Intel Xeon 5600 Processors

Woodward Taps IBM High Performance Cloud Services to Simulate Aircraft Component Design

GridCentric Announces Copper Cluster Management Software

NVIDIA Quadro GPUs Are Certified for AutoCAD

NCAR Orders Cray XT5 Supercomputer

RenderStream Announces Its VDAC 8-16 GPU Systems

Fixstars Releases ‘The OpenCL Programming Book’

Lomonosov Supercomputer Tops New Russian List of Most Powerful HPC Systems

AccelerEyes Upgrades Jacket Software for GPU Computing

New Computer Cluster Ups the Ante for Notre Dame Research

Xilinx Helps University of Regensburg Launch Most Power-Efficient Supercomputer

Pittsburgh Supercomputing Center Accelerates Scientific Research with SGI Altix UV

Software Design Technique Allows Programs to Run Faster

New AMAX Solutions Powered by NVIDIA Tesla 20-Series GPU

National Petascale Computing Facility Reaches Substantial Completion

Netezza TwinFin Appliance Used for Data-Intensive Computing Applications at PNNL

Memristor Technology Holds Intriguing Promise

HP Labs this week announced advances in memristor technology that could fundamentally change the design of computing. Memristors could be the key that enables computers to handle the ongoing information explosion, where data from a slew of devices, both explicit and embedded, threatens to overwhelm our current computing limits.

So what is a memristor? According to the HP Labs announcement, it’s “a resistor with memory that represents the fourth basic circuit.”

If you’re familiar with electronics, you will recognize the language. The trinity of fundamental components encompasses the resistor, the capacitor, and the inductor. In 1971, a University of California, Berkeley engineer, Leon Chua, predicted that there should be a fourth element: a memory resistor, or memristor. However, when memristors were first theorized 40 years ago, they were too big to be practical.

It was not until two years ago, in 2008, that researchers from HP Labs rediscovered Chu’s earlier work. With the reduction of transistor sizes, even more capabilities of the memristor were realized due to the way properties behave at nanoscale.

What makes the memristor different from other circuits is that when the voltage is turned off, it remembers its most recent resistance, and it retains this memory indefinitely until the voltage is turned on again. It would take many more paragraphs for a full explanation, but if you are interested, I suggest this easy-to-understand primer at IEEE Spectrum Web site.

One of the advantages of memristors is that they require less energy to operate, and are already being considered as a replacement to transistor-based flash memory.

Researchers predict that in five years, such chips, when stacked together, could be used to create handheld devices that offer ten times greater embedded memory than exists today, and could also be used to power supercomputers for digital rendering and genomic research applications at far greater speeds than Moore’s Law suggests is possible.

Memristors work more like human brains. In fact, Leon Chua explained that our “brains are made of memristors,” referring to the function of biological synapses.

And according to R. Stanley Williams, senior fellow and director of Information and Quantum Systems Lab at HP:

Memristive devices could change the standard paradigm of computing by enabling calculations to be performed in the chips where data is stored rather than in a specialized central processing unit. Thus, we anticipate the ability to make more compact and power-efficient computing systems well into the future, even after it is no longer possible to make transistors smaller via the traditional Moore’s Law approach.

The promises this technology offers sound almost to good to be true. If even half of what is promised holds true, than this will go down in history as one of the great breakthroughs in computer technology.

48-Core Intel Processor for Educational Purposes Only

Intel announced plans to ship “limited quantities” of computers with an experimental 48-core processor to researchers by the middle of the year. The 48-core processors will be shipped mainly to academic institutions, an Intel rep said during an event in New York on Wednesday. And while the chip will probably not become commercially available, certain features may make their way into future products.

PCWorld reported:

The 48-core chip operates at about the clock speed of Atom-based chips, said Christopher Anderson, an engineer with Intel Labs. Intel’s latest Atom chips are power-efficient, are targeted at netbooks and small desktops, and run at clock speeds between 1.66GHz and 1.83GHz. The 48-core processor, built on a mesh architecture, could lead to a massive performance boost when all the chips communicate with each other, Anderson said.

The new processor reportedly has a power draw between 25-125 watts, and cores can be powered off to save energy or reduce clock speed. The chip touts better on-die power management capabilities than current multicore chips and comes with power-management software to help lower energy consumption depending on performance requirements.

During the Wednesday event, researchers demonstrated the processor’s advanced power management features. While running a financial application, sets of cores were deactivated and the power consumption went from 74 watts to 25 watts in under a second.

The new 48-core chip is based on the 80-core Teraflop prototype created in 2007 by Intel’s Tera-scale Computing Research Program. And that chip is a runner-up to the 48-core “Single-chip Cloud Computer” announced in December 2009, also a product of the Tera-scale Computing Research Program.

Those processors, however, were only prototypes and were never released into the wild. However, the 48-core chips announced this week are almost ready to leave the research nest, and will be released if not into the fierce corporate jungles at least into the relatively tamer academic habitat.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This