The Week in Review

By Tiffany Trader

April 8, 2010

Here is a collection of highlights from this week’s news stream as reported by HPCwire.

Supermicro Delivers Platinum Level Servers

Tokyo Institute of Technology Selected as Japan’s First CUDA Center of Excellence

Criterion HPS Unveils the Phantom Extreme Featuring Intel Xeon 5600 Processors

Woodward Taps IBM High Performance Cloud Services to Simulate Aircraft Component Design

GridCentric Announces Copper Cluster Management Software

NVIDIA Quadro GPUs Are Certified for AutoCAD

NCAR Orders Cray XT5 Supercomputer

RenderStream Announces Its VDAC 8-16 GPU Systems

Fixstars Releases ‘The OpenCL Programming Book’

Lomonosov Supercomputer Tops New Russian List of Most Powerful HPC Systems

AccelerEyes Upgrades Jacket Software for GPU Computing

New Computer Cluster Ups the Ante for Notre Dame Research

Xilinx Helps University of Regensburg Launch Most Power-Efficient Supercomputer

Pittsburgh Supercomputing Center Accelerates Scientific Research with SGI Altix UV

Software Design Technique Allows Programs to Run Faster

New AMAX Solutions Powered by NVIDIA Tesla 20-Series GPU

National Petascale Computing Facility Reaches Substantial Completion

Netezza TwinFin Appliance Used for Data-Intensive Computing Applications at PNNL

Memristor Technology Holds Intriguing Promise

HP Labs this week announced advances in memristor technology that could fundamentally change the design of computing. Memristors could be the key that enables computers to handle the ongoing information explosion, where data from a slew of devices, both explicit and embedded, threatens to overwhelm our current computing limits.

So what is a memristor? According to the HP Labs announcement, it’s “a resistor with memory that represents the fourth basic circuit.”

If you’re familiar with electronics, you will recognize the language. The trinity of fundamental components encompasses the resistor, the capacitor, and the inductor. In 1971, a University of California, Berkeley engineer, Leon Chua, predicted that there should be a fourth element: a memory resistor, or memristor. However, when memristors were first theorized 40 years ago, they were too big to be practical.

It was not until two years ago, in 2008, that researchers from HP Labs rediscovered Chu’s earlier work. With the reduction of transistor sizes, even more capabilities of the memristor were realized due to the way properties behave at nanoscale.

What makes the memristor different from other circuits is that when the voltage is turned off, it remembers its most recent resistance, and it retains this memory indefinitely until the voltage is turned on again. It would take many more paragraphs for a full explanation, but if you are interested, I suggest this easy-to-understand primer at IEEE Spectrum Web site.

One of the advantages of memristors is that they require less energy to operate, and are already being considered as a replacement to transistor-based flash memory.

Researchers predict that in five years, such chips, when stacked together, could be used to create handheld devices that offer ten times greater embedded memory than exists today, and could also be used to power supercomputers for digital rendering and genomic research applications at far greater speeds than Moore’s Law suggests is possible.

Memristors work more like human brains. In fact, Leon Chua explained that our “brains are made of memristors,” referring to the function of biological synapses.

And according to R. Stanley Williams, senior fellow and director of Information and Quantum Systems Lab at HP:

Memristive devices could change the standard paradigm of computing by enabling calculations to be performed in the chips where data is stored rather than in a specialized central processing unit. Thus, we anticipate the ability to make more compact and power-efficient computing systems well into the future, even after it is no longer possible to make transistors smaller via the traditional Moore’s Law approach.

The promises this technology offers sound almost to good to be true. If even half of what is promised holds true, than this will go down in history as one of the great breakthroughs in computer technology.

48-Core Intel Processor for Educational Purposes Only

Intel announced plans to ship “limited quantities” of computers with an experimental 48-core processor to researchers by the middle of the year. The 48-core processors will be shipped mainly to academic institutions, an Intel rep said during an event in New York on Wednesday. And while the chip will probably not become commercially available, certain features may make their way into future products.

PCWorld reported:

The 48-core chip operates at about the clock speed of Atom-based chips, said Christopher Anderson, an engineer with Intel Labs. Intel’s latest Atom chips are power-efficient, are targeted at netbooks and small desktops, and run at clock speeds between 1.66GHz and 1.83GHz. The 48-core processor, built on a mesh architecture, could lead to a massive performance boost when all the chips communicate with each other, Anderson said.

The new processor reportedly has a power draw between 25-125 watts, and cores can be powered off to save energy or reduce clock speed. The chip touts better on-die power management capabilities than current multicore chips and comes with power-management software to help lower energy consumption depending on performance requirements.

During the Wednesday event, researchers demonstrated the processor’s advanced power management features. While running a financial application, sets of cores were deactivated and the power consumption went from 74 watts to 25 watts in under a second.

The new 48-core chip is based on the 80-core Teraflop prototype created in 2007 by Intel’s Tera-scale Computing Research Program. And that chip is a runner-up to the 48-core “Single-chip Cloud Computer” announced in December 2009, also a product of the Tera-scale Computing Research Program.

Those processors, however, were only prototypes and were never released into the wild. However, the 48-core chips announced this week are almost ready to leave the research nest, and will be released if not into the fierce corporate jungles at least into the relatively tamer academic habitat.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This