New Cray OS Brings ISVs in for a Soft Landing

By Michael Feldman

April 14, 2010

Cray has never made a big deal about the custom Linux operating system it packages with its XT supercomputing line. In general, companies don’t like to tout proprietary OS environments since they tend to lock custom codes in and third-party ISV applications out. But the third generation Cray Linux Environment (CLE3) that the company announced on Wednesday is designed to make elite supercomputing an ISV-friendly experience.

Besides adding compatibility to off-the-shelf ISV codes, which we’ll get to in a moment, the newly-minted Cray OS contains a number of other enhancements. In the performance realm, CLE3 increases overall scalability to greater than 500,000 cores (up from 200,000 in CLE2), adds Lustre 1.8 support, and includes some advanced scheduler features. Cray also added a feature called “core specialization,” which allows the user to pin a single core on the node to the OS and devote the remainder to application code. According to Cray, on some types of codes, this can bump performance 10 to 20 percent. CLE3 also brings with it some additional reliability features, including NodeKARE, a diagnostic capability that makes sure jobs are running on healthy nodes.

But the biggest new feature added to CLE3 is compatibility with standard HPC codes from independent software vendors (ISVs). This new capability has the potential to open up a much broader market for Cray’s flagship XT product line, and further blur the line between proprietary supercomputers and traditional HPC clusters.

Cray has had an on-again off-again relationship with HPC software vendors. Many of the established ISVs in this space grew up alongside Cray Research, and software from companies like CEI, LSTC, SIMULIA, and CD-adapco actually ran on the original Cray Research machines. Over time, these vendors migrated to standard x86 Linux and Windows systems, which became their prime platforms, and dropped products that required customized solutions for supercomputers. Cray left most of the commercial ISVs behind as it focused on high-end HPC and custom applications.

But a couple of years ago, Cray decided it was going to bring the ISVs back into its top-of-the-line supers. The company already had the major pieces in place — an x86 platform in the Opteron-based XT architecture and a SUSE Linux-based OS in CLE. The pieces didn’t quite fit because Cray used an MPI implementation targeted to its proprietary SeaStar system interconnect, while the ISVs employ MPI libraries built atop a standard communication protocol — either TCP/IP or the OpenFabrics Enterprise Distribution (OFED). The only way commercial software (or any software for that matter) would run on an XT machine was by compiling the application code with the Cray libraries. In fact, CD-adapco and LSTC went to the trouble of doing exactly that and ported some of their codes to run on Cray supercomputers. In general, though, ISVs would rather not be bothered to maintain and support multiple distributions of their software for low-volume platforms.

In Cray’s new Linux distribution, Cray has added a TCP/IP layer on top of its SeaStar library to form a bridge to standard Linux codes. That means vanilla ISV applications should literally work out of the box, assuming the software licensing is set up properly. According to Barry Bolding, vice president of Cray’s Scalable Systems division, they have been busy testing codes from all the major vendors — ANSYS, The MathWorks, SIMULIA, CEI, CD-adapco, LSTC, Metacomp Technologies, Accelrys — and have yet to uncover incompatibilities. He says from the application’s point of view, the Cray system software environment now looks like any standard x86 Linux cluster.

Access to the TCP/IP interface is only available in what Cray calls “Cluster Compatibility Mode” (CCM), which represents the ISV-friendly part of CLE3. The default environment is Cray’s “standard” runtime, which they now refer to as “Extreme Scalability Mode.” The idea is that as ISV-derived jobs are queued up for execution, the appropriate nodes are loaded with CCM, and then subsequently reprovisioned with ESM after the application completes. The OS footprint for the two modes is nearly identical, with the CCM version about 45 MB larger than its ESM sibling.

In the initial version of CLE3, the size of a CCM job is limited to 2,048 cores. Bolding says that’s because they don’t think they’ll be able to achieve any more scalability than that with the TCP/IP implementation. Of course, multiple CCM apps could be running simultaneously. So, for example, an Abaqus CAE job could be running on 100 nodes, a CEI EnSight one on another 50, MATLAB on 20 more, and so on.

Bolding claims that the performance they’ve achieved from TCP/IP on top of SeaStar is close to what you could get out of an InfiniBand-based cluster. The upcoming “Baker” system will incorporate the faster “Gemini” interconnect, so they expect a significant performance gain just from the new hardware. In addition, next year Cray plans to offer an OFED communication stack on top of its interconnect, which should boost performance even further. Bolding is confident the Gemini-OFED combo will outrun InfiniBand in any benchmark.

With the initial CLE3 release, the company can now target customers who need the XT for their own scalable custom codes, but who wouldn’t have purchased a system because they wanted to run ISV codes in tandem. How big of a market that represents is anyone’s guess, but Cray will soon find out. Next year, with the optimized Gemini/OFED communication, the company can sell Bakers to customers that only have ISV apps to run, but can pay a premium for better performance.

CLE3 will be released on the various XT platforms in stages. The initial version will be included with the currently-shipping XT6 and XT6m machines, with plans to make it available for the XT5 and XT5m systems sometime later in the year. CLE3 will also be packaged with the Baker supers from the start. Those systems are expected to start shipping in the third quarter of 2010.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This