Yes, You Too Can Eclipse Netflix

By Nicole Hemsoth

April 21, 2010

When we’re talking about strict hardware-related HPC, defining high-performance computing is usually straightforward. However, when we extend the concept of HPC into the cloud and then to even further complicate the matter by adding in discussion about how HPC and cloud are being utilized in commercial and large-scale enterprise class settings, the roots of those concrete hardware definitions start to peel away.

Every business wants supercomputer capacity on-demand. And who could really blame them? It seems that most enterprises need vast, scalable capacity to remain competitive. For smaller businesses, getting competitive out of the gate is finally an option since the law of “he with the most start-up capital for tech infrastructure wins” is on the wane.

After skimming some HPC and cloud-related news I chose, at first anyway, to ignore, I started to think about these things a little more in-depth. With a big group of engineers coupled with some general HPC backing, cloud power, and an Ultra Marketing Bot 5000 (not a real product but thought a Nexus 6 Publicity Model would have been too vague), could just anyone compete with a company like, say, Netflix?

If every enterprise’s capacity suddenly becomes unlimited, then does it all just boil down to who has the best architects and the finest sales force to convince the world it’s better than what already exists in droves?

Netflix Cloud Adoption in the News

When I first saw this New York Times news story about Netflix’s shift to the cloud I was reticent to draw everyone’s attention to it by sticking into the “This Just In” section here on HPC in the Cloud because it didn’t seem…relevant. After all, this is the mail-order movie business — the post office is involved, for crying out loud. Where’s the gritty HPC in that?

But you know, I didn’t think my omission of Netflix through, so I decided to go back and revisit it in this blog.

So rewind and let’s retroactively pop this into the April 18th This Just In…

When Netflix announced that it had moved into the public cloud space and was housing some of its operations with Amazon Web Services, the burning question was to what extent their operations had gone to the cloud already and how much — what percentage, that is — would be heading cloud-ward over the two-year implementation.

The New York Times and others touted this as a use case of a large-scale data-intensive operation going full-blown into the cloud, but following an interview this morning with Steve Swasey, Vice President of Corporate Communications at Netflix, this shift into the cloud isn’t quite as comprehensive as it seems — at least not yet.

The company has moved some of its major power-gobbling processes to Amazon Web Services’ public cloud, but the really good and juicy stuff — that’s all hoarded away on Netflix’s own internal servers. And that’s probably not going to change, according to Swasey.

From what it sounds like, Netflix took one particular type of process (the encoding of new film into the system to make it available as a stream on demand) and since it would have been foolhardy from a resource, time (and therefore cost) perspective not to do so, they plunked it down on AWS. While Swasey didn’t go into detail about other major operations in the public cloud, he did suggest that anything remotely sensitive was stored in-house. Other search tools, customer queues, and more customer-facing (versus internal) will be hosted in the cloud — but the buck stops there.

Netflix isn’t just shipping and receiving movies using snail mail and some scattered company PCs on an internal network, after all. There are multiple arms of this business that require vastly different resources and that also require immense scalability since there are most likely times and days of peak demand for instantly-available streaming movies on a PC. When coupled with the other side of the Netflix operation — the shipping, receiving and storing of films in over 50 centers throughout the United States that send automatic messages in vast quantities to its huge database of users alone is complex. When we factor in encoding video and then turning around to deliver it on demand, there are whole new levels of resource and scheduling issues.

According to Swaysey, the adoption of AWS took place quite rapidly; Netflix began testing Amazon’s public cloud at the beginning of 2010 and analyzed test results to gauge progress. The company found that it significantly reduced dependency on its own data centers as well as cut back on time and engineering time, especially for one of the critical functions of the Netflix service — taking the raw film from production houses and handling all of the encoding in-house so that the films could be streamed to customers on-demand at the touch of a button.

Until comfort in the cloud grows — something that we will monitor closely here — companies with wide-ranging, large-scale, data-intensive needs will likely experiment with the cloud to outsource resource-heavy operations but in the end, security and protection of sensitive data seems to be the biggest hurdle. Companies like Netflix are willing to bear the much higher costs of IT resources as they keep their special data close to home.

Does that mean that the quickest way for new enterprises who start with the cloud (versus having to be talked into migration) to get a head start is by taking the plunge and sending all (even the juicy, private, confidential, secure stuff) into a public cloud?

While Swayse was tight-lipped about anything in the way of specifics in terms of the compute environment, it just took some thinking-through for me to see that they are managing, scheduling, and balancing the same large-scale, data-intensive, mission-critical workloads “real” enterprises in science and research are — the difference is, well, it’s “just” movies.

If your startup costs were minimal and you relied on pure ground-up cloud architecture and a gaggle of really, really smart friends, would it be possible to compete with a Netflix? Will it all just boil down to who has the most innovate marketing versus the best capacity if everyone has unlimited capacity?

If only I had more time.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This