RoCE: An Ethernet-InfiniBand Love Story

By Michael Feldman

April 22, 2010

To go along with the low-latency theme of this week’s High Performance Computing Linux Financial Markets confab in New York City, the InfiniBand Trade Association (IBTA) announced the release of the RDMA over Converged Ethernet standard that brings InfiniBand-like performance and efficiency into the Ethernet realm.

Abbreviated RoCE (and pronounced “Rocky”), the new standard allows the RDMA guts of InfiniBand to run over Ethernet. Basically the IBTA has taken the InfiniBand stack, left the IB transport and network layers intact, and swapped the IB link layer for Ethernet. Or as OpenFabrics Alliance Executive Director Bill Boas put it: “The only change here is that the verbs in the InfiniBand standard have been implemented over Ethernet.”

This is a much simpler solution than iWARP (Internet Wide Area RDMA Protocol), which also uses RDMA, but incorporates TCP/IP into the stack. In a sense, iWARP tried to unify InfiniBand and IP, but that model has garnered limited appeal. Supporting the TCP/IP stack meant latency could only get into the 10 microsecond range. Freed of that extra processing burden, RoCE latency can approach 1-3 microsecond territory. And it can be implemented more cheaply and with less power consumption. Yes, IP support is missing, but in a closed cluster environment, you would normally just use a gateway node to talk to the outside world.

In general, RoCE is aimed at users of clustered computing setups who might otherwise have opted for InfiniBand because of its speed and agility, but who are already married to Ethernet — either to maintain compatibility with existing storage networks and compute infrastructure or because their local datacenter already has a big investment in Ethernet technology, expertise and management tools. Mellanox has been talking about this technology for a year or so, under the moniker low-latency Ethernet.

“Essentially what you’re able to do now is run close to InfiniBand-like latency over 10 Gigabit Ethernet,” says Brian Sparks, IBTA marketing working group co-chair and director of marketing communications at Mellanox . “But you don’t have the InfiniBand barrier and the learning curve that goes with that.”

RoCE isn’t quite InfiniBand-strength, though. QDR IB nets 32 Gbps and sub-microsecond latencies, while RoCE is currently limited to 10 Gig and latencies closer to single-digit microseconds. For most apps, though, 10 Gig is plenty of bandwidth (and there’s a clean path to 40 and 100 Gig when Ethernet catches up). The real hurt is on the latency side.

Financial services, database warehousing, cloud computing and related virtualization apps are all potential targets of this technology. One of the tastiest low-hanging fruits for RoCE is high frequency trading (HFT), an Ethernet-based application that is all about latency. HFT is a highly lucrative class of algorithmic trading that relies far more on network performance than compute muscle. The object of the game is to turn reams of market data coming in from Ethernet-based ticker feeds into split-second arbitrage opportunities. One person I recently spoke with characterized it as “picking up a nickel in front of a freight train.” RoCE seems tailor-made for this type of application.

In more traditional HPC, RoCE could have plenty of takers. Again, the real draw here is the ubiquity of the Ethernet ecosystem and the promise of near-InfiniBand performance. It’s worth noting that more than half the systems on the TOP500 list are still employing Ethernet interconnects. That’s because there are plenty of big cluster-based workloads (for example, data mining) that don’t require obsessively tight coupling, but would still benefit from better latency than vanilla Ethernet. As HPC makes deeper inroads into the enterprise, RoCE could look fill this role.

As of this week, RoCE is implemented in OpenFabrics Enterprise Distribution (OFED) 1.5.1. The Linux version is available today, with a Windows implementation to follow later this year. That makes it especially nice for applications already written for OFED RDMA. In these cases, there would be no need to twiddle with the code again; the apps should just auto-magically run over any RoCE fabric.

On the hardware side, basically you need an L2 Ethernet switch with IEEE DCB (Data Center Bridging, aka Converged Enhanced Ethernet) with support for priority flow control. On the compute or storage server end, you need an RoCE-capable network adapter. Expect the most enthusiastic vendors to come out with products later this year. Mellanox has already declared its intentions to offer RoCE-friendly adapters. OpenFabrics will release a software-based RoCE later in the second quarter. Soft-RoCE will make a regular 10GbE NIC act like the hardware version.

One might wonder why the IBTA and its InfiniBand-loving members decided to push an Ethernet protocol at all. If RoCE is successful, there’s bound to be some cannibalization of the InfiniBand market. But that’s the wrong way to think about it. First, there are no InfiniBand vendors anymore, at least not in the strict sense. All these companies — Mellanox, Voltaire and QLogic — offer Ethernet products of one sort or another. The market decided some time ago that IB technology would only spread so far. RoCE is another way for these vendors to reach customers they couldn’t attract before. The calculation is that there’s enough daylight between RoCE and InfiniBand to support the viability of both technologies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This