Cloud’s New Language Set to Bloom

By Nicole Hemsoth

April 26, 2010

MIT’s Technology Review provided some in-depth coverage on the top ten emerging technologies for the coming year. On a list that includes solar fuel, green concrete, and light-trapping photovoltaics, the publication tacked on the concept of “cloud programming” — a revolutionary movement that is a attributed in large part to the work of Joseph Hellerstein and his team at the University of California, Berkeley.

Hellerstein and other researchers at Berkeley have created a language called “Bloom,” which has received a great deal of attention following its implementation in Hadoop. Hellerstein was able to make key alterations to Hadoop to render it less likely to hit critical points of failure and simplify scheduling processes among other unique “quick fixes.” The special ingredient in this language that makes it so functional and useful is simplicity — it casts aside the need to program around dependencies and unknowns, allowing for innovation and creativity versus what amounts to educated guesswork for programmers. While it’s not clear what immediate life-altering changes will be evident in HPC and enterprise computing upon the release date, the Bloom language is making cloud programming far more intuitive and applicable for a community far larger than a cluster of specialized infrastructure engineers. By removing the complex barriers to cloud programming, there is no end in sight for new developments for cloud-specific platforms. The language will be released in full later in 2010, but it is already gathering great interest from cloud infrastructure providers, among others.

As the MIT Technology Review describes, since prior to Hellerstein’s work, languages processed data in static batches, but they were unable to process data that was changing in real-time. Hellerstein’s “fix” for this problem is “to build into the language the notion that data can be dynamic, changing as it’s being processed. This sense of time enables a program to make provisions for data that might be arriving later — or never.”

Writing cloud applications is nothing short of a programming nightmare, even for the most experienced programmers. This is due to the fact that managing and tracking data across time is filled with such a host of unknowns that it can be nearly impossible to do accurately. Furthermore, since the miniscule errors that threaten programming tasks are difficult to detect (let alone repeat and debug), the process of writing cloud applications is thwarted at worst and messy at best.

Hellerstein’s idea is geared at finding a way to tidy the programming process by altering the database programming languages so they can be easily unified and the focus can be on creativity and innovation versus the time-consuming task of mere data tracking.

The following is a transcript from HPC in the Cloud’s interview with Joseph Hellerstein:

HPCc: Can you give some background on the Boom and Bloom project — how the idea developed, how long ago you started working on the language?

Joseph Hellerstein: This project began about eight years ago when we were spending time looking at some of the simple infrastructure involved in Internet search (which included Web crawlers and  Google’s PageRank algorithm for ranking pages to give better answers) and we noticed that in both cases, the algorithms they were using looked a lot like walking along a graph — the Web is like a graph of Web pages that are connected to one another and the crawler will follow the links and “walk” around on a network or graph of nodes. The page rank algorithm for ranking walks the same sort of graph but in its own particular way. Both of these algorithms were things that in classic logic language anyway, you could easily write in a few lines. So back in 2003 we were wondering why a programmer should have to work so hard to build these when they could be written so simply. With this in mind we set out to build an infrastructure so that a basic three-line program could achieve those goals and perform those tasks.

We did some initial things with that concept. For instance, we built a deep Web crawler, a crawler for the Gnutella P2P file-sharing network — and when we done we realized that what we were doing was actually a lot like routing on a network; that what a web crawler does is it moves its attention from node to node on the internet something like a packet as it is sent from node to node on the internet from a source to a destination.

After thinking about this, we wondered if it would be possible for us to implement TCP/IP in the same way we implemented these crawlers and use very simple logic programs. The more we thought about it, the more excited we got because the answer to that was yes, as we started thinking, we got excited because a lot of the basic protocol routing on the internet and wireless networks could be set at a much higher level in these logic languages. From then on, we set ourselves to task of building a system and language to let people build network protocols.

So all of this takes us to close to the beginning of the new century when we were doing a lot of work with what we called declarative networking, which make it easy for people to build network protocols. And when we hit this point, we had this really cool language for people who built plumbing for the internet but for these folks who already like how they’ve been doing things, there just wasn’t a lot of demand. So we were at a point in the research where we had this really great idea but the application domain it was developed for either isn’t that interesting or those who could make use of it aren’t interested.

At about this time that we had this developed and weren’t seeing a lot of uptake on the idea, cloud computing started getting a lot attention and at some point, collectively really, a light bulb went off as we realized that cloud is the perfect environment — that we needed an easier way to program things that would go across lots of different computers. And everybody needed this, not just a select group of infrastructure engineers. Cloud computing is where we saw a critical need for a programming paradigm shift.

HPCc: So this new language was not driven by a specific need or to answer to the problem of programming difficulty across large numbers of computers — it evolved on its own?

Hellerstein: No, it took on a life of its own, but actually, to back up a bit, it is a nice story about research and long-term payoff.

The roots of this go back to the 70s and 80s in database theory — back in the 70s there were some early papers saying that we should be able to program with simple mathematical logic, with just writing down rules of inference — of course, this was considered to be something of a curiosity. From this, there was a language called Prolog, which had some brief excitement and the database community picked it up in a theoretical context and developed a cleaner language called DataLog. There was a lot of controversy surrounding all of this because the theorists were wring about the esoteric principles behind this and the applied people in the field, some of whom were very influential, were telling them it was useless and had no utility — they said this in print. The applied folks and theorists — there was some bad blood there.

In early 200 when we were playing with crawlers and routing we thought that stuff might be useful in practice. Coincidentally, at the same time, a bunch of other groups in different research areas (security, complier analysis, natural language processing) started picking up DataLog and started to revive this esoteric language. In short, we’re part of the payoff of work that went on when I was in high school and college.

HPCc: What major problems does this language solve for programmers and what will it mean for large-scale computing in the cloud?

Hellerstein: First of all, the hard part about programming multiple computers at once arguably boils down to the interweaving of actions in time across the different computers since they’re all working at the same time. A second part of the problem has to do with the fact that people’s versions of data are often different across different machines.

We can put this problem in the form of a simple analogy: You can imagine writing down a recipe you want someone to cook. If you know it’s going to be a single cook you write down the order of operations and it works fine. But you take that same recipe to a commercial kitchen at a hotel and break down the pieces of the recipe and assign them to sets of different chefs, the coordination is a little different. You need to make sure each step is complete at the right time to be handed off to the next chef and that the coordination from one step to the next works. When you do things this way — have multiple “chefs” it just becomes a more complicated problem.

So to bring it back to the concept at hand, when people think about programming a thousand computers they write a single program that when run it a thousand times. When you do this, you just hope the interweavings of the actions it takes work out right — reasoning it out is very tricky because you can’t control the speed every computer runs at, or at which the messages travel to communicate and coordinate and can’t control the possibility that some of them will crash in the middle. Programming around these eventualities is really hard — even great programmers find this hard. Debugging these is also hard because the problem might be based on very subtle errors that cannot be reproduced.

The other half of the problem has to do with data and the dependencies between different versions of data. If it’s looking at a copy of some piece of data and another machine is looking at a different copy of the piece they might come to different conclusions and take different actions. It’s worse than just copied data — if it’s dependency-related, it’s not that there are different copies — there are results of different copies, which leads to a mangled final product.

To put it simply, our what our work is trying to do is start with the data itself and get people to talk about what should happen to the data step-by-step through a program without ever having them specify at all how many machines are involved. So, when you ask a query of a database you describe what data you want — not how to get it. There’s a database engine underneath that gives the “how” and that database engine has built-in operations that can deal with the tasks of query processing in a parallel fashion.

Query processing tasks are easy to parallelize — they rip apart the data into pieces and operate on the pieces independently. If we can get people to specify what the program should produce versus how it should do it, the system underneath will take care of the details. All the system underneath needs to do is partition data the way that a database query processor does.

HPCc: Can you describe how the Bloom language worked in a test project like the Hadoop modifications you made?

Hellerstein: Our work on Hadoop is not unlike the first things we did with crawlers; we looked at the Hadoop system and said, “it’s not that hard — so why is it such a big piece of software?”

Conceptually what we were doing was really simple; you think it shouldn’t be hard but it’s very big software and is complex and hard to change. We wanted to show our language was real so that everyone could see it in practice. So what we did, we completely rebuilt the Hadoop file system from scratch in one of our earlier languages to show we could do it and that it was in every way compatible with the Hadoop file system. We built the api-compatible version of Hadoop then we went ahead and said “what’s the yuckiest, hardest to modify pieces of Hadoop” and extracted that — which was a scheduling piece of Map Reduce, and we went ahead and put in a scheduler implemented in our language. It worked — we showed it could be smaller, simpler, and easier to make Hadoop better so we moved forward. Our next project was to examine the single point of failure in Hadoop — the point at which everything is lost due to this one master node. We talked to IBM and found that they’d lost terabytes upon terabytes of data. So we implemented PAXOS, which is a protocol to get the computers in a distributed environment to agree with each other and this one-month change altered Hadoop for the better.

Another aspect of Hadoop we looked at involved the master node in times of need; So the master node needs more hosepower if you run out of power or memory and you have to buy another bigger one, which is a very “un-Hadoopy” thing to do. The master is the gatekeeper to scaling — we saw we could partition the work of the master across many nodes. Upon realizing this, it took us 24 hours and we were able to parallelize this across machines. This kind of dramatic increase in ability is what we wanted to show.

HPCc: Where is the most interest in this coming from right now? Who are going to be the early adopters working with this in mission-critical or HPC environments?

Hellerstein: The people we’ve been talking to the most are those who are building cloud and data infrastructure, in part because those are the applications we’ve been focusing on. So the cloud research group at Microsoft, the people at SAP — enterprise computing is a natural place to think about this taking shape first within but it’s not likely to change very fast in practice is my guess. Enterprise as an industry is conservative because of the cost of entry is high.  The whole market moves slow — so even though those are the natural obvious applications and adopters we think about and it could be that something very lightweight is the first thing to pick this up. The people we have looking closely are all data people — people with big data problems but whoever thought something like Twitter would become the next big thing? There’s no way to tell.

HPCc: How are we going to see this manifest down the line? How is this is going to create a “boom” in cloud computing, even if it is starting at the top slowly and trickling down?

Hellerstein: When someone presents a platform with new capabilities, you probably don’t know what people will do with it yet — it’s wide open. For instance, when mobile phones with compute power started coming out there was some talk about email on the phones and location services, but people really didn’t know how mobile phones would change application developing and what kinds of applications we’d want to run on our phones. That’s a story that’s still developing, actually. In some senses, application developers are not aware of what the next “killer app” will be but people do have the tools to create it, thus it becomes about innovation. That’s where we are with cloud right now; what will happen when people have the power of a thousand computers at their disposal for development?

We’re not starting to try to develop the killer app — we’re showing how easy we can make it to build what we know already works.  The people who really need all thousand computers at once are who we protoyped this for: infrastructure services — the cloud infrastructure providers like Google and Amazon, who need to have large-scale data export and analytics systems. We showed it’s much easier to build those things in our environment than it was originally. That leaves the door open to innovation.

To read more about Joseph Hellerstein, go to his U.C. Berkeley page that has numerous links to papers and reports on this and other subjects relevant to the HPC and cloud community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

Dell Strikes Reseller Deal with Atos; Supplants SGI

August 22, 2017

Dell EMC and Atos announced a reseller deal today in which Dell will offer Atos’ high-end 8- and 16-socket Bullion servers. Some move from Dell had been expected following Hewlett Packard Enterprise’s purchase of SGI Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This