SGI Looks to Freeze Out HPC Competition with New ICE Machine

By Michael Feldman

May 5, 2010

SGI has upgraded its HPC blade server lineup with the latest x86 silicon and a turbo-charged InfiniBand network. The Altix ICE 8400 is the successor to the company’s 8200 series and is designed as a premier solution for the HPC cluster market, scaling as high as 64,000 nodes.

The 8400 represents the fourth generation of the ICE product line, which was begun in 2007, although this iteration is probably the most significant upgrade to the system in its three-year run. Besides moving up to the latest Intel Westmere EP chips (Xeon 5600), for the first time SGI is adding an AMD Opteron option as well. Prior to the company’s merge with Rackable last year, SGI was an Intel-only vendor.

Both x86 blades come in a dual-socket setup and use standard chipsets. The Intel blades feature quad- or six-core Xeon 5600 processors, although customers can opt for the previous generation Xeon 5500 silicon as well. Using the six-core Xeon, up to 768 cores can be stuffed into one cabinet.

The most notable feature on the Xeon side is that SGI has designed the blades to handle the fastest and hottest SKUs in Intel’s arsenal, in other words, the 130 watt parts. To date, all other HPC server offerings have shied away from these top-end Xeon chips since the extra heat produced limits the density of the designs, especially for the closely-packed blade architectures. The standard high-end processors for x86 blades are the 95 watt parts.

“We realize there are some competitors with higher density,” admits Paul Kinyon, senior product marketing manager at SGI. “But what we’ve duly noted is that there is no free lunch.” From their perspective, the HPC market is very sensitive to application licensing costs, and just increasing the CPU server density at the expense of clock speed can end up costing more in software than might have been saved in hardware consolidation.

Speaking of density, the AMD option for the 8400 supports the new 8- and 12-core Opteron 6100 chips (Magny-Cours), which makes a 1,536-core cabinet doable. And since the new Opteron blade supports up to 16 DIMM slots (as opposed to 12 DIMMs on the Xeon blade), there’s more memory to go around as well.

Interestingly, SGI allows you to mix Xeon and Opteron blades in the same cabinet, and run them under the same system manager. A more likely configuration would be to keep the Xeons and Opterons confined to separate racks, using a job scheduler to push specific apps onto the different blades. The rationale is that Intel chips are more suitable to codes needing fewer faster cores, with the AMD chips offering the advantage in memory bandwidth and core count. According to Kinyon, they’ve seen “a fair amount of interest” from customers who are considering a mixed-vendor x86 cluster.

Customers who want to give this x86 odd couple scenario a whirl will have to wait until later in the year, though. While the Intel blades are available now, the AMD hardware won’t be shipping until Q3. From a pure blade perspective (sans CPUs), Kinyon says the AMD and Intel models are similarly priced. Once you add in the CPUs and memory, prices will almost certainly vary. While the Opteron CPUs tend to be less expensive than their Xeon counterparts, if additional memory is desired to support the extra Opteron cores, costs may even out.

Specialized service nodes, which appear as peers to the x86 nodes, can also be integrated into an 8400 cluster. These include shared memory UV10 and NVIDIA Tesla GPU nodes. The shared memory node option, in particular, seems to be gaining traction as an add-on for HPC distributed memory machines, and Kinyon says they’ve already bid this configuration on some recent RFPs.

CPUs and GPUs aside, the bigger story for the new 8400 is what SGI has done with the interconnect. Here they’ve decided to push InfiniBand about as far as it will go. The 8400EX version, in particular, is optimized for maximum interconnect performance. It uses a dual plane network and four integrated QDR InfiniBand switches per enclosure. For better price-performance, the 8400LX offers a single plane network and cuts the InfiniBand switches to two per enclosure.

SGI touts the 8400EX as tops in the industry for MPI performance, delivering a three-fold increase in bandwidth per node versus the competition. The company is claiming a world record result (51.3) for the 8400 on the SPECmpiL_2007 benchmark. Although more pricey, the dual plane design gives customers the option to either use the extra bandwidth as a single fat pipe, employ one of the planes for redundancy for MPI traffic, or dedicate one plane to MPI traffic and the other to I/O.

Multiple network topologies are offered, including hypercube, enhanced hypercube, all-to-all and fat tree topology. Except for the for all-to-all, the other topologies were available in the 8200 product, allowing customers to easily add to their legacy ICE systems by extending the same fabric.

SGI designed the new all-to-all topology to deliver maximum bandwidth (up to 12,000 MB/sec per node) and lowest latency, although this option only scales to 128 nodes. The enhanced hypercube — available in the 8200, but juiced up for the 8400 — is next in bandwidth performance and scales all the way up to tens of thousands of nodes. The fat tree topology is the highest in cost, requiring external switches, but enables all-to-all MPI communication at scale. The hypercube is the lowest cost, but the least performant of the bunch.

According to SGI, there are already some orders on the books for the new Altix. One early deployment is at NASA Ames, where the Pleiades supercomputer just added 32 racks of 8400 hardware, boosting its performance to just shy of a petaflop (973 teraflops).

As seems to be the current tradition in selling high-end servers, SGI is not talking pricing on the 8400. Kinyon says they were very careful when designing the new Altix to make sure that they didn’t price themselves out of the value end of the x86 cluster-based market. At the same time, they wanted to offer a solution for users “on the hairy edge of HPC.” The company believes they’ve struck the right balance of price and performance with the 8400. Says Kinyon: “We’re just jumping up and down and waiting to hear the competition whimper.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This