Dally Disses Multicore

By Michael Feldman

May 6, 2010

Despite all the recent fanfare about the latest CPU wonderchips from Intel, AMD and IBM, not everyone has hopped aboard the multicore train. In a recent column in Forbes, NVIDIA chief scientist, Bill Dally, argues that the traditional multicore implementation of Moore’s Law is a dead end. He sums it up thusly:

To continue scaling computer performance, it is essential that we build parallel machines using cores optimized for energy efficiency, not serial performance. Building a parallel computer by connecting two to 12 conventional CPUs optimized for serial performance, an approach often called multi-core, will not work.

The fact that Bill Dally is saying this should come as no surprise. He works for a GPU maker after all, so his view of the computing landscape is from a rather particular vantage point. In his commentary, he only mentions GPUs once, but the subtext of GPUs as the savior of Moore’s Law is palpable enough.

In fact, his main point is valid, and one that been recognized for years: CPU power scaling, which enabled performance increases at a constant level of wattage, is over. The workaround is multiple cores, but since CPU cores are optimized for serial work, there is a built-in inefficiency when trying to mold highly-parallel codes around this architecture.

The reasoning is a little bit more subtle than that. Multicore CPUs are generally fine for traditional task parallelism, where each thread more or less can operate independently. CPUs, however, are less adept at data parallelism, and that’s where GPUs really shine. The other side to this is that task parallelism usually doesn’t scale well (or easily) as the size of the problem grows. Data parallelism, on the other hand, is relatively easy to scale.

To keep Moore’s Law-type scaling viable for applications, Dally says that we need to build throughput computers made up of many simple cores. That just so happens to coincide with the GPU model, but other manycore processors from companies such as Tilera and Tensilica also fit this architectural style. The Larrabee architecture was Intel’s first attempt to build a true throughput computer, with x86 as the starting point. That didn’t quite work out as they planned, although you can bet the chipmaker will take another run at this.

Beyond the construction of throughput computers, Dally believes the real challenge will be converting the huge bulk of existing serial apps to run in parallel. Here’s my take on this is: don’t bother. Most serial programs are serial for a reason. For example, the text editor I’m using to compose this article is about as fast as I need it to be. Outside our particular HPC community, there are plenty of apps in this category.

Most of the killer apps for throughput processors have yet to be designed, much less implemented. A next-generation word processor that converts my English to German on the fly and simultaneously suggests Web references to what I’m writing about will be able to take advantage of throughput processors. And that’s a fairly trivial example. Companies like Intel and NVIDIA are betting the “3D Web” will be one of the big playgrounds for these highly parallel applications.

Meanwhile, back in Fermiville…

Whether intentional or not, Dally’s Forbes commentary last week served as an interesting precursor to NVIDIA’s slow-motion rollout of the company’s new Fermi Tesla 20-series hardware. NVIDIA quietly posted the specs for the new products on its Web site on Tuesday, even though volume production of the processors is not expected until late May. The GPU maker’s fab partner, TSMC, is having problems with yields for the new 40nm chips — not too surprising considering Fermi sports around 3 billion transistors for the high-end parts.

In fact, NVIDIA has scaled back the core count on the first batch of Tesla GPUs. Back in September the company was talking about 512-core Fermis, but the first Tesla silicon will come in with just 448 cores (not quite twice the 240 cores of the previous 10-series). They’ve also throttled the clock frequency a bit to keep the heat manageable. Even at that, the new Tesla chips suck plenty of power — 225 watts TDP, to be precise.

But for that wattage, you get 515 gigaflops double precision and over a teraflop of single precision. EM Photonics benchmarked the new Fermi GPUs using DGETRF (a double precision LAPACK routine) and demonstrated a three-fold performance increase over the previous generation GPUs. In a real-world application, Artemis Capital Asset Management demonstrated a performance boost for certain financial analytics codes with the new Fermi GPUs. “The new cache structure in combination with the huge number of processor cores provides excellent resources for high-frequency trading,” said Tobias Preis, managing director of Artemis Capital Asset Management.

Despite the late production start for the Fermi Tesla parts, Appro, AMAX, Supermicro and Tyan all announced new Fermi-based server gear this week. Tyan revealed two new platforms that stuff as many as 8 Tesla M2050 GPUs in a 4U chassis. Supermicro launched three Fermi-based offerings: a 1U server with two GPUs, a 4U with four GPUs, and 2U with two hot-plug GPU nodes. AMAX unveiled a GPU cluster using NVIDIA S2050/S2070 Tesla servers as well as a 4U server with 2 CPUs and up to 8 GPUs per chassis. Appro launched a couple of new Fermi-based product, which we covered in greater depth here.

The Fermi deluge is just beginning. Most of the major and minor HPC OEMs will come out with products using the new GPUs between now and ISC’10, and even beyond that. If all goes according to plan, I expect to see a smattering of Fermi-accelerated supers on the TOP500 list in November.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflops Tianhe-2 and currently with the 93-petaflops TaihuLight. T Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present usability and programmability problems that flummox IT shops. Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger communities? That question is at the heart of a new study pub Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Launches Site to Share its NYC-based Algorithm Research

August 22, 2017

Much of Google’s algorithm development occurs in groups scattered throughout New York City. Yesterday, Google launched a single website - NYC Algorithms and Optimization Team page - to provide a deeper view into all of Read more…

By John Russell

China Plans 2019 Exascale Machine To Grow Sea Power

August 23, 2017

The glory of having the world's fastest supercomputer, as measured by the Linpack benchmark, has been China's for four years running, first with the 33-petaflop Read more…

By Tiffany Trader

Microsoft, Intel Unveil FPGA-driven Project Brainwave

August 23, 2017

We know about the seeming light-speed processing power of FPGAs and the natural fit they pose for data-dense AI workloads. But we also know that FPGAs present u Read more…

By Doug Black

Study Identifies Best Practices for Public-Private HPC Engagement

August 22, 2017

What's the best way for HPC centers in the public sphere to engage with private industry partners to boost the competitiveness of the companies and the larger c Read more…

By Tiffany Trader

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Singularity HPC Container Technology Moves Out of the Lab

May 4, 2017

Last week, Singularity – the fast-growing HPC container technology whose development has been spearheaded by Gregory Kurtzer at Lawrence Berkeley National Lab Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This