Dally Disses Multicore

By Michael Feldman

May 6, 2010

Despite all the recent fanfare about the latest CPU wonderchips from Intel, AMD and IBM, not everyone has hopped aboard the multicore train. In a recent column in Forbes, NVIDIA chief scientist, Bill Dally, argues that the traditional multicore implementation of Moore’s Law is a dead end. He sums it up thusly:

To continue scaling computer performance, it is essential that we build parallel machines using cores optimized for energy efficiency, not serial performance. Building a parallel computer by connecting two to 12 conventional CPUs optimized for serial performance, an approach often called multi-core, will not work.

The fact that Bill Dally is saying this should come as no surprise. He works for a GPU maker after all, so his view of the computing landscape is from a rather particular vantage point. In his commentary, he only mentions GPUs once, but the subtext of GPUs as the savior of Moore’s Law is palpable enough.

In fact, his main point is valid, and one that been recognized for years: CPU power scaling, which enabled performance increases at a constant level of wattage, is over. The workaround is multiple cores, but since CPU cores are optimized for serial work, there is a built-in inefficiency when trying to mold highly-parallel codes around this architecture.

The reasoning is a little bit more subtle than that. Multicore CPUs are generally fine for traditional task parallelism, where each thread more or less can operate independently. CPUs, however, are less adept at data parallelism, and that’s where GPUs really shine. The other side to this is that task parallelism usually doesn’t scale well (or easily) as the size of the problem grows. Data parallelism, on the other hand, is relatively easy to scale.

To keep Moore’s Law-type scaling viable for applications, Dally says that we need to build throughput computers made up of many simple cores. That just so happens to coincide with the GPU model, but other manycore processors from companies such as Tilera and Tensilica also fit this architectural style. The Larrabee architecture was Intel’s first attempt to build a true throughput computer, with x86 as the starting point. That didn’t quite work out as they planned, although you can bet the chipmaker will take another run at this.

Beyond the construction of throughput computers, Dally believes the real challenge will be converting the huge bulk of existing serial apps to run in parallel. Here’s my take on this is: don’t bother. Most serial programs are serial for a reason. For example, the text editor I’m using to compose this article is about as fast as I need it to be. Outside our particular HPC community, there are plenty of apps in this category.

Most of the killer apps for throughput processors have yet to be designed, much less implemented. A next-generation word processor that converts my English to German on the fly and simultaneously suggests Web references to what I’m writing about will be able to take advantage of throughput processors. And that’s a fairly trivial example. Companies like Intel and NVIDIA are betting the “3D Web” will be one of the big playgrounds for these highly parallel applications.

Meanwhile, back in Fermiville…

Whether intentional or not, Dally’s Forbes commentary last week served as an interesting precursor to NVIDIA’s slow-motion rollout of the company’s new Fermi Tesla 20-series hardware. NVIDIA quietly posted the specs for the new products on its Web site on Tuesday, even though volume production of the processors is not expected until late May. The GPU maker’s fab partner, TSMC, is having problems with yields for the new 40nm chips — not too surprising considering Fermi sports around 3 billion transistors for the high-end parts.

In fact, NVIDIA has scaled back the core count on the first batch of Tesla GPUs. Back in September the company was talking about 512-core Fermis, but the first Tesla silicon will come in with just 448 cores (not quite twice the 240 cores of the previous 10-series). They’ve also throttled the clock frequency a bit to keep the heat manageable. Even at that, the new Tesla chips suck plenty of power — 225 watts TDP, to be precise.

But for that wattage, you get 515 gigaflops double precision and over a teraflop of single precision. EM Photonics benchmarked the new Fermi GPUs using DGETRF (a double precision LAPACK routine) and demonstrated a three-fold performance increase over the previous generation GPUs. In a real-world application, Artemis Capital Asset Management demonstrated a performance boost for certain financial analytics codes with the new Fermi GPUs. “The new cache structure in combination with the huge number of processor cores provides excellent resources for high-frequency trading,” said Tobias Preis, managing director of Artemis Capital Asset Management.

Despite the late production start for the Fermi Tesla parts, Appro, AMAX, Supermicro and Tyan all announced new Fermi-based server gear this week. Tyan revealed two new platforms that stuff as many as 8 Tesla M2050 GPUs in a 4U chassis. Supermicro launched three Fermi-based offerings: a 1U server with two GPUs, a 4U with four GPUs, and 2U with two hot-plug GPU nodes. AMAX unveiled a GPU cluster using NVIDIA S2050/S2070 Tesla servers as well as a 4U server with 2 CPUs and up to 8 GPUs per chassis. Appro launched a couple of new Fermi-based product, which we covered in greater depth here.

The Fermi deluge is just beginning. Most of the major and minor HPC OEMs will come out with products using the new GPUs between now and ISC’10, and even beyond that. If all goes according to plan, I expect to see a smattering of Fermi-accelerated supers on the TOP500 list in November.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This