Dally Disses Multicore

By Michael Feldman

May 6, 2010

Despite all the recent fanfare about the latest CPU wonderchips from Intel, AMD and IBM, not everyone has hopped aboard the multicore train. In a recent column in Forbes, NVIDIA chief scientist, Bill Dally, argues that the traditional multicore implementation of Moore’s Law is a dead end. He sums it up thusly:

To continue scaling computer performance, it is essential that we build parallel machines using cores optimized for energy efficiency, not serial performance. Building a parallel computer by connecting two to 12 conventional CPUs optimized for serial performance, an approach often called multi-core, will not work.

The fact that Bill Dally is saying this should come as no surprise. He works for a GPU maker after all, so his view of the computing landscape is from a rather particular vantage point. In his commentary, he only mentions GPUs once, but the subtext of GPUs as the savior of Moore’s Law is palpable enough.

In fact, his main point is valid, and one that been recognized for years: CPU power scaling, which enabled performance increases at a constant level of wattage, is over. The workaround is multiple cores, but since CPU cores are optimized for serial work, there is a built-in inefficiency when trying to mold highly-parallel codes around this architecture.

The reasoning is a little bit more subtle than that. Multicore CPUs are generally fine for traditional task parallelism, where each thread more or less can operate independently. CPUs, however, are less adept at data parallelism, and that’s where GPUs really shine. The other side to this is that task parallelism usually doesn’t scale well (or easily) as the size of the problem grows. Data parallelism, on the other hand, is relatively easy to scale.

To keep Moore’s Law-type scaling viable for applications, Dally says that we need to build throughput computers made up of many simple cores. That just so happens to coincide with the GPU model, but other manycore processors from companies such as Tilera and Tensilica also fit this architectural style. The Larrabee architecture was Intel’s first attempt to build a true throughput computer, with x86 as the starting point. That didn’t quite work out as they planned, although you can bet the chipmaker will take another run at this.

Beyond the construction of throughput computers, Dally believes the real challenge will be converting the huge bulk of existing serial apps to run in parallel. Here’s my take on this is: don’t bother. Most serial programs are serial for a reason. For example, the text editor I’m using to compose this article is about as fast as I need it to be. Outside our particular HPC community, there are plenty of apps in this category.

Most of the killer apps for throughput processors have yet to be designed, much less implemented. A next-generation word processor that converts my English to German on the fly and simultaneously suggests Web references to what I’m writing about will be able to take advantage of throughput processors. And that’s a fairly trivial example. Companies like Intel and NVIDIA are betting the “3D Web” will be one of the big playgrounds for these highly parallel applications.

Meanwhile, back in Fermiville…

Whether intentional or not, Dally’s Forbes commentary last week served as an interesting precursor to NVIDIA’s slow-motion rollout of the company’s new Fermi Tesla 20-series hardware. NVIDIA quietly posted the specs for the new products on its Web site on Tuesday, even though volume production of the processors is not expected until late May. The GPU maker’s fab partner, TSMC, is having problems with yields for the new 40nm chips — not too surprising considering Fermi sports around 3 billion transistors for the high-end parts.

In fact, NVIDIA has scaled back the core count on the first batch of Tesla GPUs. Back in September the company was talking about 512-core Fermis, but the first Tesla silicon will come in with just 448 cores (not quite twice the 240 cores of the previous 10-series). They’ve also throttled the clock frequency a bit to keep the heat manageable. Even at that, the new Tesla chips suck plenty of power — 225 watts TDP, to be precise.

But for that wattage, you get 515 gigaflops double precision and over a teraflop of single precision. EM Photonics benchmarked the new Fermi GPUs using DGETRF (a double precision LAPACK routine) and demonstrated a three-fold performance increase over the previous generation GPUs. In a real-world application, Artemis Capital Asset Management demonstrated a performance boost for certain financial analytics codes with the new Fermi GPUs. “The new cache structure in combination with the huge number of processor cores provides excellent resources for high-frequency trading,” said Tobias Preis, managing director of Artemis Capital Asset Management.

Despite the late production start for the Fermi Tesla parts, Appro, AMAX, Supermicro and Tyan all announced new Fermi-based server gear this week. Tyan revealed two new platforms that stuff as many as 8 Tesla M2050 GPUs in a 4U chassis. Supermicro launched three Fermi-based offerings: a 1U server with two GPUs, a 4U with four GPUs, and 2U with two hot-plug GPU nodes. AMAX unveiled a GPU cluster using NVIDIA S2050/S2070 Tesla servers as well as a 4U server with 2 CPUs and up to 8 GPUs per chassis. Appro launched a couple of new Fermi-based product, which we covered in greater depth here.

The Fermi deluge is just beginning. Most of the major and minor HPC OEMs will come out with products using the new GPUs between now and ISC’10, and even beyond that. If all goes according to plan, I expect to see a smattering of Fermi-accelerated supers on the TOP500 list in November.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This