One Group’s Answer to Transistors Behaving Badly

By Michael Feldman

May 11, 2010

Over the last 50 years, the semiconductor business has enjoyed what is perhaps the most thrilling ride of any industry ever conceived. Today semiconductors are a $250 billion business that account for nearly 10 percent of the world’s GDP. At the foundation of its success is Moore’s Law, the chipmaker’s mantra that promises better, faster and cheaper transistors every 18 to 24 months. But the laws of physics are conspiring to bring this ride to an end.

The problems are well known. CMOS-based transistors are increasingly harder to manufacture at nanometer scale. And even as technologies are perfected to do so, the materials themselves are becoming unsuitable for such small geometries. At 22 nm, Intel’s process node slated for 2011, gate oxide will be only 4 to 5 atoms thick and the gates themselves will be 42 atoms across. Manufacturing these devices in reasonable volumes and within reasonable power envelopes is going to be a challenge.

In fact, the analyst team at iSuppli has predicted that the expense of manufacturing sub-20nm devices would not be economically feasible. That is, the cost of the fabs could not be recouped by the volume of chips produced at those process nodes. Thus, they concluded, Moore’s Law would be repealed in about five years.

Most of the efforts to address the problem of shrinking transistor geometries have focused on making the devices behave more precisely, using technologies like X-ray lithography and hafnium insulators, to name just two. But what if instead of trying to make the transistors better, we purposefully try to make them worse.

Although it sounds counter-intuitive, developing processors that are naturally error-prone is exactly what one team of researchers from the University of Illinois and the University of California, San Diego has set out to do. Called stochastic processors, the idea is to under-design the hardware, such that it is allowed to behave non-deterministically under both stressful and nominal conditions. Error tolerance can be provided by either the hardware or the software.

The rationale is that by relaxing the design and manufacturing constraints, it will be much simpler and much cheaper to produce such processors in volume. And because voltage scaling and clock frequency restrictions are eased, significant power savings and performance increases can be realized.

The stochastic model would represent a significant departure from the way semiconductor devices are designed today. Even though processors have evolved significantly over the decades — scalar to superscalar, single-core to multicore, etc. — the basic assumption has always been that the hardware must behave flawlessly. “It’s the contract that the hardware provides to the software today,” says Rakesh Kumar, a computer scientist at the University of Illinois, Urbana-Champaign, who is part of the Stochastic Processor Research group there. The research is being funded by Intel, DARPA, the NSF, and the GigaScale Systems Research Center (GSRC), a consortium of academic, government and industry organizations devoted to next-generation hardware and software.

The idea behind stochastic processors is relatively simple: Build a chip that computes correctly, say, 99 percent of the time. Such a device is specifically designed to let errors occur under both worst-case and nominal conditions. The advantage of this model is that, compared to a 100 percent error-free processor, a stochastic implementation requires a lot less manufacturing precision and takes a lot less power to run.

Kumar’s stochastic research group has designed a Niagara processor (an open source processor design developed by Sun Microsystems) that allows for a 1 to 4 percent error rate. Based on circuit level simulation with CAD design tools, the researchers determined they could save between 25 to 40 percent on power compared to the default (deterministic) design. That might seem like a lot, but it points to how much of a traditional processor design is now being devoted to keeping the transistors from throwing off errors.

It also explains why multicore designs introduce another level of challenges for chipmakers. For example, if two of the cores on a quad-core processor can run (flawlessly) at 2.0 GHz, one can run at 1.5 GHz, and the last core can only run error-free at 1.0 GHz, the chip has to be binned at 1.0 GHz. That’s money down the drain as far as the chipmaker is concerned. Ideally, they would like to ship a 2.0 GHz product and use some sort of scheme to compensate for the variability in the other two cores. A stochastic design would make this possible.

Of course, compensating for that variability is the tricky part. Kumar says error tolerance can be accomplished in hardware or in software. Hardware correction would be the most obvious and, from the programmer’s perspective, the most palatable way to ensure correct program execution. But error tolerance in software provides more flexibility.

“Our vision is that all the errors that are produced get tolerated by the software,” says Kumar. Part of the group’s research involves how to write application software in such a way that takes into account a non-deterministic processor. Kumar believes this shift in thinking is inevitable. Because the hardware variability problem is going to keep getting worse as process geometries shrink, it will eventually make more sense for the programmer to code for non-determinism rather that write the software for the least common denominator hardware. On balance, Kumar believes the ideal would be to employ hardware correction only when it is too onerous to compensate for the errors in software.

HPC applications might be especially at home on stochastic processors since many of these codes are fundamentally optimization problems. In other words, they are noise tolerant to a great extent, relying on probability distributions rather than a single correct computation. Monte Carlo methods are just one example of a class of algorithms used in HPC that rely on optimization techniques, but almost any simulation or matrix math-based code has some level of optimization built in — think climate modeling, data mining, and object recognition apps. In these cases, says Kumar, “you’re not going after one answer, you’re going after a good answer.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Wondering How AI is Doing Versus Doctors?

September 26, 2017

With all the noise around AI’s potential in medicine, you may be wondering how well it is actually performing. No one knows the real answer - for one thing it is a moving target - but the IEEE Spectrum is attempting to Read more…

By John Russell

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Forum (IHPCF2017) in China. The TianHe-2A will use a proprieta Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

SC17 Preview: Invited Talk Lineup Includes Gordon Bell, Paul Messina and Many Others

September 25, 2017

With the addition of esteemed supercomputing pioneer Gordon Bell to its invited talk lineup, SC17 now boasts a total of 12 invited talks on its agenda. As SC explains, "Invited Talks are a premier component of the SC Read more…

By Tiffany Trader

Cray Completes ClusterStor Deal, Sunsets Sonexion Brand

September 25, 2017

Having today completed the transaction and strategic partnership with Seagate announced back in July, Cray is now home to the ClusterStor line and will be sunsetting the Sonexion brand. This is not an acquisition; the ClusterStor assets are transferring from Seagate to Cray (minus the Seagate ClusterStor IBM Spectrum Scale product) and Cray is taking over support and maintenance for the entire ClusterStor base. Read more…

By Tiffany Trader

China’s TianHe-2A will Use Proprietary Accelerator and Boast 94 Petaflops Peak

September 25, 2017

The details of China’s upgrade to TianHe-2 (MilkyWay-2) – now TianHe-2A – were revealed last week at the Third International High Performance Computing Fo Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This