Network-based Processing Versus Host-based Processing: Lessons Learned

By Gilad Shainer

May 17, 2010

Introduction

CPU clock speeds have remained essentially constant over the last several years, resulting in the number of CPUs used in high-end systems rapidly increasing to keep up with the performance boosts expected by Moore’s law. System size on the TOP500 list has changed rapidly, and, in November 2009 the top ten systems averaged 134,893 cores, with five systems larger than 100,000 cores. This rapid increase of system size and the associated increase in the number of compute elements used in a single user job increase the urgency of dealing with system characteristics that impede application scalability.

By providing low-latency, high-bandwidth and extremely low CPU overhead, InfiniBand has become the most deployed high-speed interconnect, replacing proprietary or low-performance solutions. The InfiniBand Architecture (IBA) is an industry-standard fabric designed to provide high scalability and efficient utilization of compute processing resources. InfiniBand scalability was already proven on multiple large-scale systems listed on the TOP500 list: LANL “Roadrunner” (4K nodes and 130K cores), NASA (above 7K nodes and 56K cores), NUDT “TianHe” (3K nodes and 72K cores), Jülich JuRoPa and HPC-FF (3K nodes and 30K cores) , TACC (4K nodes and 63K cores) and Sandia “Red Sky” (5.4K nodes and 43K cores) are a few examples. All of them use an InfiniBand solution that provides network-based processing.

Network-based Processing Versus Host-based Processing

In general, connectivity solutions can be divided into multiple categories: standard (such as InfiniBand and Ethernet) versus proprietary (such as SeaStar and Quadrics), high speed versus low speed, and offloading (or network-based processing) versus onloading (i.e., host-based processing). With offloading network solutions, the entire network transport is handled and performed by the NIC or adapter, including error handling, data retransmissions for reliable data transfer, and other sophisticated communications such as MPI. Onloading network solutions rely on the host central processing units (CPUs) to perform any task that is related to data transfer between servers or servers and storage; from data gathering, data packet creation, transport checks, reliability, physical-to-virtual memory translation, process protection (i.e., security) and more. To make it simple, offloading networks free the CPU from the need to handle server-to-server communications and instead dedicate most cycles to the user applications, and onloading networks are no more than the proverbial string and two metal cans that we played with as children.

Why Onloading Solutions?

The motivation for onloading solutions, or for using a string and two metal cans, is the simplicity of building such solutions. Since all networking processing is being done by the host, the NIC or the adapter needs only to include a bridge from the host-based interface (in most cases today, it is PCI-Express) and the network interface (InfiniBand, Ethernet etc.) and a buffer for shock absorption (which protects the network from a burst of data). As such, no major new technology needs to be developed, making solutions less costly. The big drawback is with the scalability and performance that such solutions can provide within a system, measured in terms of overall system performance and productivity. As more overhead processing is done by the CPU, less CPU time is available for user applications, resulting in lower system performance and scalability. One example is a comparison between Ethernet and InfiniBand on the Top500 list; since most of Ethernet solutions require the TCP (i.e., the transport) to be handled by the CPU, Ethernet-connected systems achieve on average only 50 percent efficiency, meaning 50 percent of the system capability cannot be utilized or is otherwise wasted. InfiniBand-connected systems on the Top500 list demonstrate up to 96 percent efficiency, therefore maximizing the CPU cycles for the user application and hence the overall system return on investment.

Offloading Solutions: Balance the System

Offloading network solutions eliminate the CPU overhead related to process-to-process communications, data transfer reliability, memory translations and process protections (or security) and data segmentations and reassembly. Moreover, this is the only way to counter the effect of system noise and jitter on application performance and scalability (e.g., by offloading MPI collectives communications), and the only way to allow overlapping between computations and communications within the server.

Scientific simulation codes frequently use collective communications. Offloading networks typically include programming capabilities for special features, and simulation of future problems.

With the increase in the demand for higher performance and scalability, offloading solutions are required in order to balance the increased number of CPU cores, and to provide a solution that can maximize the platform compute capability. Offloading solutions require sophisticated technology and advanced simulations in NIC or adapter deign. Therefore, not many vendors have the knowledge and capabilities required to produce offloading networks.

The System Latency

User applications resided in the user space, a space where no protection can be guaranteed for the process data. Data movement needs to involve an entity that will ensure that data from one process will not overwrite the memory space of another process by mistake, resulting in data destruction and security issues. Such entity can be the host CPU in the kernel space or the networking adapter. If done by the CPU in the kernel space, any user data needs to be copied there before being sent to the wire (i.e., a buffer copy), user to kernel system call needs to be triggered and as well as a CPU interrupt. Furthermore, data copy in large messages can increaste the negative performance effects due to cache trashing, TLBs etc. This implies higher latency for data transfer, as can be seen in Figure 1; this compares the latencies of “write” transactions between two servers. The latency ratio between onloading solutions and offloading solutions (in this case, InfiniBand), can be up to 700 percent higher when using onloading solutions versus offloading solutions. 
 
Figure 1

One can question the RDMA Write latency difference in light of the data provided by the different vendors for MPI latency. Both offloading-based and onloading-based solutions providers promote about 1us latency for MPI transactions. As offloading solutions demonstrate around 1us latency for RDMA write and send transactions, it is obvious that the MPI latency will be in the same range. On the other hand, onloading solutions demonstrate 7us latency for RDMA write transactions, so how come vendors promote figures around 1us for MPI latency? The reason is that with onloading solutions, such MPI latency benchmarks send the data directly from the user space to the network, and writing the data back from the network to the user space avoiding the buffer copy and the kernel space memory mapping. While this can be done for artificial benchmarks, avoiding memory checking and process isolation in production usage can result in data reliability and security issues. Those issues are critical in systems hosting many users, e.g., in cloud computing.

Network Message Rate

One of the known benchmarks besides latency and throughput is the network message rate, which is basically the network throughput divided by the message size, for small message sizes. In the case of onloading networks, this benchmark tests the ability of the CPU cores to create a network packet and send it through the two metal cans and the string. Assuming that the bridging between the host interface, or the PCI-Express, and the network interface (InfiniBand, for example) is good enough to provide the maximum data speed of those interfaces, as more CPU cores are used for network packet creation, more messages will be sent on the wire. One must remember that first, for such benchmarks, all of the CPU resources are being used for network packet creation; therefore no CPU is available for the user applications; and, second, in such benchmarks it is the same network packet that is being sent to the wire over and over again and does not reflect the real application situation where data on the wire is different from one network packet to the other. In simple words, for onloading networks, message rate is a CPU benchmark, and not really a network benchmark.

For offloading networks, the message rate benchmark really measures the network’s ability to create data packets and send them to the target. In the case of offloading networks, the CPU is not involved in the data transfer, and therefore is free for the user applications. The information about CPU availability is not mentioned on the various message rate benchmark results that are used for different publication methods, as shown in Figure 2. Figure 2 compares the message rate of an InfiniBand offloading solution versus InfiniBand onloading, and, as can be seen, no data point for CPU availability is provided. Actually, the CPU availability in this case is nearly zero for the onloading solution, which translates to no capability to run user applications, as all of the CPU cycles are being used to create network packets and send them out.
 
Figure 2

Figures 3 and 4 provide the InfiniBand message rate comparison based on the CPU availability. The comparison points of 50 percent and 85 percent CPU availability were used. With 50 percent, half of the CPU cycles were set for the user application, and the other half of the CPU cycles were used for the network processing within the onloading network solution. This resembles the average capability of the Ethernet networks: to provide 50 percent CPU availability, or efficiency. In the 85 percent case, 85 percent of the CPU cycles where dedicated to the user applications, while only 15 percent of the CPU cycles could be used for the packet creation. This represents the average capability of InfiniBand networks. As can be seen, the InfiniBand offloading solution maintains the same message rate capabilities since it does not demand CPU cycles for network processing, while the message rate capability of the onloading solution has been reduced dramatically. In production environments, CPU availability is critical for efficient usage of compute systems and for delivering the needed scalability. Offloading network are critical to guaranty that those requirements are met.
 
Figure 3

 
Figure 4

Scalability and Productivity

Those are the more desired items: to scale the system to meet the compute needs of today and tomorrow, and to maximize the return of investment or the productivity of the system. When one invests in the latest CPU technologies and a fast connection to host memory, it is critical to ensure that those resources can be fully utilized, and to connect them via high-performance, offloaded networking solutions.

The ability of adapters to offload the MPI collectives communication is extremely important for HPC application based on MPI. Collective communications, which have a crucial impact on the application’s scalability, are frequently used by scientific simulation codes like broadcasts for sending around initial input data, reductions for consolidating data from multiple sources, and barriers for global synchronization. Any collective communication executes certain global communications operations by coupling all processes in a given group. This behavior tends to have the most significant negative impact on the application’s scalability.

In addition, the explicit and implicit communication coupling, used in high-performance implementations of collective algorithms, tends to magnify the effects of system noise on application performance, further hampering application scalability. Some adapters address the collective communication scalability problem by offloading a sequence of data-dependent communications to the Host Channel Adapter (HCA). This solution provides the mechanism needed to support computation and communication overlap, allowing the communications to progress asynchronously in hardware, while at the same time computations are processed by the CPU. It also is a way to reduce the effect of system noise and application skew on application scalability. Needless to say, those capabilities cannot be provided with onloading solutions. Onloading solutions do the opposite; they eliminate any way to overlap computation and communications cycles, and thus magnify the effects of system noise and jitter on application performance.

Summary

As tests show, network offloading solutions are critical for high-performance system scalability, performance and productivity. Onloading solutions can negatively affect the system efficiency, and therefore are not recommended for systems with the above requirements. The main (and probably only) reason for onloading solutions is their price. Surprisingly, according to public market surveys, there is no real price gap between onloading solutions and offloading solutions in the InfiniBand market. Therefore, for a given system, the decision between offloading and onloading solutions should be very easy. When price gaps do exist, one should always review the entire system cost (i.e., by taking into account both capital expenses and operational expenses), and the desired return on investment for making the right decisions.

From the performance figures shown in 2-4, one can see that offloading networks (in this case InfiniBand), provide the needed scalability for multiple system cores while ensuring maximum core performance for user applications. One can argue that the frequency of the NIC or adapter is not as fast as the CPU, but such speed is not required. Offloading adapters need to be able to handle all incoming/outgoing data at wire speed, and — since it is being done in a highly parallel way — the offloading adapters can maintain the needed scalability and high performance without running at CPU-like frequencies. As the number of cores grows, the adapters provide higher throughput. Thus, using adapters that can handle all network data at wire speed, as in a full offloading architecture, is the secret for scalable systems.

About the Author

Gilad Shainer is an HPC evangelist that focuses on high-performance computing, high-speed interconnects, leading-edge technologies and performance characterizations. He is a senior director of HPC and technical computing at Mellanox Technologies and the chairman of the HPC Advisory Council. Gilad Shainer holds M.Sc. degree (2001, Cum Laude) and a B.Sc. degree (1998, Cum Laude) in Electrical Engineering from the Technion Institute of Technology in Israel. He also holds patents in the field of high-speed networking.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This