IBM Brings NVIDIA Tesla GPUs Onboard

By Michael Feldman

May 18, 2010

NVIDIA’s GPU computing ambitions got a major boost today with IBM’s announcement of the iDataPlex dx360 M3. The new HPC server pairs two Tesla GPUs with two CPUs inside the same server chassis. As such, IBM represents the first Tier 1 server vendor to bring CPU-GPU “hybrid” computing to the high performance computing market.

“This is the first time we’re in a mainstream server,” says NVIDIA’s Sumit Gupta, senior product manager for the Tesla GPU computing group. Last week, Appro, Supermicro, AMAX and Tyan announced integrated CPU-GPU server gear based on NVIDIA’s new Fermi architecture Tesla 20-series devices. What IBM provides is a broad global sales channel and unmatched brand recognition.

All these systems, including the new iDataPlex from IBM, make use of the latest Tesla M2050 computing modules that can be integrated into a CPU-based host system. Each M2050 delivers 515 gigaflops of raw double precision floating point performance (or 1,030 gigaflops single precision), and comes with 3 GB of GDDR5 memory. IBM customers can also opt for the M2070, which offers the same floating point performance, but with 6 GB of local GPU memory.

The base configuration on the new iDataPlex consists of a two-socket motherboard with the latest Intel Xeon CPUs. A riser card is used to hook in the Tesla modules. The configuration allows for relatively easy maintenance and replacement of the GPU components.

IBM’s move into the GPU computing space is a big win for NVIDIA and for GPU acceptance in HPC, in general. Over the past couple of years, the company had remained very quiet on the GPU computing front, and there were no indications it would be adding this capability to its HPC lineup. “I think what’s changed is that customers have been experimenting for a long time and now they’re getting ready to buy,” says Dave Turek, vice president of the deep computing group at IBM. “It’s as simple as that.”

According to Turek, IBM has been tracking customer demand for this capability for some time, and felt now was the time to jump onto the GPU computing train. From Turek’s point of view, this is less about the extra capabilities provided by NVIDIA’s new Fermi architecture (ECC memory, double precision, programmability) and more about the general increase in customer acceptance of the GPU computing paradigm. “If the marketplace hadn’t been ready at this time, we would have bypassed this for sure,” he admits. “It wasn’t the technology that drove us to do this. It was the maturation of the marketplace and the attitude toward using this technology.”

The company expects the new GPU-equipped iDataPlex to get the most traction in what have become the early adopter segments for GPU accelerated computing, namely the oil and gas industry, big science research at government labs and universities, and the biotech space (with perhaps some uptake by financial institutions). All of those segments have a few things in common that makes them an especially attractive target for GPU acceleration: a nearly endless need for more vector math capability, in-house programming expertise to push their apps over the GPU programming hurdle, and a limited dependency on ISVs who may or may not be interested in GPU support.

IBM’s decision to pursue the HPC market with a CPU-GPU offering is particularly relevant in another sense. Over the past couple of years, the company had pinned much of its hybrid supercomputing hopes on its own HPC variant of the Cell processor: the PowerXCell 8i. That processor was used to power the Roadrunner supercomputer, the first general-purpose computing system to break the Linpack petaflop barrier back in 2008. IBM still offers the Cell-based QS22 blades based on the PowerXCell 8i, but has halted plans to forge a successor to that chip design.

In fact, from IBM’s point of view, the GPU-equipped iDataPlex is just another entry in its rather large portfolio of HPC hardware. Between the new Power7-based 755 servers, the Blue Gene/P, and its x86-based iDataPlex gear, IBM has probably the broadest HPC offerings in the industry. The hybrid computing iDataPlex is another way the company thinks it can cover what has become a fairly diverse HPC market.

Turek says IBM will be careful not to overhype its new GPU-accelerated boxes. Although coprocessor acceleration seems to be in vogue right now, not every application is going to be able to take advantage of it. Certainly most matrix math-intensive apps will be able to realize a several-fold performance boost compared to a CPU-only implementation, but it really depends on how much of the code is engaged in these types operations and how much is just doing sequential threading.

If Linpack is a guide — and that’s really all it is — some apps will do very well indeed on the new Fermi GPUs. NVIDIA ran some benchmarks on its own CPU-GPU server, consisting of two Tesla C2050 cards (comparable to two M2050s) plus two Intel Xeon X5550 processors, with 48 GB memory. They found Linpack performance was eight times that of a comparable CPU-only server: 80.1 gigaflops for the CPU version versus 656.1 for the GPU-accelerated box. When they looked at price-performance and power usage, they found a five-fold advantage. So for $1 million worth of CPUs, you can get 10 teraflops of Linpack, while that same money spent on GPU-CPU gear will get you to 50 teraflops — and a certain spot on the TOP500 if you’re interested in HPC celebrity.
Fermi GPU Linpack

With IBM now in the GPU computing game, it’s almost a sure bet HP and Dell won’t be far behind. And with the tier 1 OEMs onboard, integrated CPU-GPU servers are likely to become standard operating equipment by most, if not all, HPC vendors over the next several months.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This