IBM Brings NVIDIA Tesla GPUs Onboard

By Michael Feldman

May 18, 2010

NVIDIA’s GPU computing ambitions got a major boost today with IBM’s announcement of the iDataPlex dx360 M3. The new HPC server pairs two Tesla GPUs with two CPUs inside the same server chassis. As such, IBM represents the first Tier 1 server vendor to bring CPU-GPU “hybrid” computing to the high performance computing market.

“This is the first time we’re in a mainstream server,” says NVIDIA’s Sumit Gupta, senior product manager for the Tesla GPU computing group. Last week, Appro, Supermicro, AMAX and Tyan announced integrated CPU-GPU server gear based on NVIDIA’s new Fermi architecture Tesla 20-series devices. What IBM provides is a broad global sales channel and unmatched brand recognition.

All these systems, including the new iDataPlex from IBM, make use of the latest Tesla M2050 computing modules that can be integrated into a CPU-based host system. Each M2050 delivers 515 gigaflops of raw double precision floating point performance (or 1,030 gigaflops single precision), and comes with 3 GB of GDDR5 memory. IBM customers can also opt for the M2070, which offers the same floating point performance, but with 6 GB of local GPU memory.

The base configuration on the new iDataPlex consists of a two-socket motherboard with the latest Intel Xeon CPUs. A riser card is used to hook in the Tesla modules. The configuration allows for relatively easy maintenance and replacement of the GPU components.

IBM’s move into the GPU computing space is a big win for NVIDIA and for GPU acceptance in HPC, in general. Over the past couple of years, the company had remained very quiet on the GPU computing front, and there were no indications it would be adding this capability to its HPC lineup. “I think what’s changed is that customers have been experimenting for a long time and now they’re getting ready to buy,” says Dave Turek, vice president of the deep computing group at IBM. “It’s as simple as that.”

According to Turek, IBM has been tracking customer demand for this capability for some time, and felt now was the time to jump onto the GPU computing train. From Turek’s point of view, this is less about the extra capabilities provided by NVIDIA’s new Fermi architecture (ECC memory, double precision, programmability) and more about the general increase in customer acceptance of the GPU computing paradigm. “If the marketplace hadn’t been ready at this time, we would have bypassed this for sure,” he admits. “It wasn’t the technology that drove us to do this. It was the maturation of the marketplace and the attitude toward using this technology.”

The company expects the new GPU-equipped iDataPlex to get the most traction in what have become the early adopter segments for GPU accelerated computing, namely the oil and gas industry, big science research at government labs and universities, and the biotech space (with perhaps some uptake by financial institutions). All of those segments have a few things in common that makes them an especially attractive target for GPU acceleration: a nearly endless need for more vector math capability, in-house programming expertise to push their apps over the GPU programming hurdle, and a limited dependency on ISVs who may or may not be interested in GPU support.

IBM’s decision to pursue the HPC market with a CPU-GPU offering is particularly relevant in another sense. Over the past couple of years, the company had pinned much of its hybrid supercomputing hopes on its own HPC variant of the Cell processor: the PowerXCell 8i. That processor was used to power the Roadrunner supercomputer, the first general-purpose computing system to break the Linpack petaflop barrier back in 2008. IBM still offers the Cell-based QS22 blades based on the PowerXCell 8i, but has halted plans to forge a successor to that chip design.

In fact, from IBM’s point of view, the GPU-equipped iDataPlex is just another entry in its rather large portfolio of HPC hardware. Between the new Power7-based 755 servers, the Blue Gene/P, and its x86-based iDataPlex gear, IBM has probably the broadest HPC offerings in the industry. The hybrid computing iDataPlex is another way the company thinks it can cover what has become a fairly diverse HPC market.

Turek says IBM will be careful not to overhype its new GPU-accelerated boxes. Although coprocessor acceleration seems to be in vogue right now, not every application is going to be able to take advantage of it. Certainly most matrix math-intensive apps will be able to realize a several-fold performance boost compared to a CPU-only implementation, but it really depends on how much of the code is engaged in these types operations and how much is just doing sequential threading.

If Linpack is a guide — and that’s really all it is — some apps will do very well indeed on the new Fermi GPUs. NVIDIA ran some benchmarks on its own CPU-GPU server, consisting of two Tesla C2050 cards (comparable to two M2050s) plus two Intel Xeon X5550 processors, with 48 GB memory. They found Linpack performance was eight times that of a comparable CPU-only server: 80.1 gigaflops for the CPU version versus 656.1 for the GPU-accelerated box. When they looked at price-performance and power usage, they found a five-fold advantage. So for $1 million worth of CPUs, you can get 10 teraflops of Linpack, while that same money spent on GPU-CPU gear will get you to 50 teraflops — and a certain spot on the TOP500 if you’re interested in HPC celebrity.
Fermi GPU Linpack

With IBM now in the GPU computing game, it’s almost a sure bet HP and Dell won’t be far behind. And with the tier 1 OEMs onboard, integrated CPU-GPU servers are likely to become standard operating equipment by most, if not all, HPC vendors over the next several months.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances – including ones targeting HPC – at its AWS re:Invent 2022 Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaboration, an Intel executive said last week. There are close t Read more…

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

AWS Solution Channel

Shutterstock 110419589

Thank you for visiting AWS at SC22

Accelerate high performance computing (HPC) solutions with AWS. We make extreme-scale compute possible so that you can solve some of the world’s toughest environmental, social, health, and scientific challenges. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

AWS Introduces a Flurry of New EC2 Instances at re:Invent

November 30, 2022

AWS has announced three new Amazon Elastic Compute Cloud (Amazon EC2) instances powered by AWS-designed chips, as well as several new Intel-powered instances Read more…

Quantum Riches and Hardware Diversity Are Discouraging Collaboration

November 28, 2022

Quantum computing is viewed as a technology for generations, and the spoils for the winners are huge, but the diversity of technology is discouraging collaborat Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the c Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Leading Solution Providers

Contributors

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire