StarCluster Brings HPC to the Amazon Cloud

By Justin Riley

May 18, 2010

Setting up an HPC cluster in the cloud can be a daunting task for new users looking to utilize the cloud to run their HPC applications. Learning the ins and outs of the infrastructure as a service (IaaS) model in addition to configuring and installing a typical HPC system is not an easy task.

In order to use the cloud effectively users need to be able to automate the process of requesting and configuring new resources and also terminate resources when they’re no longer required without losing data. These concerns can be a challenge even for advanced users and require some level of cloud programming in order to get it right. In an effort to improve this situation, the Software Tools for Academics and Researchers (STAR) group at MIT has created an open-source project called StarCluster that allows anyone to create and manage their own HPC clusters hosted on Amazon’s Elastic Compute Cloud (EC2) without needing to be a cloud expert.

StarCluster Configuration

One of StarCluster’s primary goals is to be simple to use and to hide as many of the cloud computing details from users as possible. When a new user attempts to use StarCluster for the first time an example configuration file is created that is ready to be used out-of-the-box. The user simply needs to fill in the EC2 account information and optionally customize the number of machines to use before he or she is ready to start a cluster. Starting a cluster with the example configuration will launch a two-machine cluster using the cheapest instance types available on EC2. This allows users to experiment with StarCluster for the first time without dramatic up-front costs.

The group of cluster-specific settings in the configuration file is known as a “cluster template”. StarCluster supports defining multiple cluster templates which can be used when launching a cluster. For example, it’s often useful to have separate templates for different cluster sizes such as a template that defines a small two-machine cluster and another template that defines a large ten-machine cluster. These templates can be specified at runtime to allow a variety of configurations to be used when starting a cluster.

Starting an HPC Cluster on EC2

Once the configuration file has been created, starting a cluster is as simple as running “starcluster start mynewcluster” at the command line. This command will first verify that all settings in the configuration file are valid and are likely to create a working system. Once the settings in the configuration file have been verified, the “start” command creates a new cluster based on these settings with a tag-name of “mynewcluster” on EC2.

Once the “start” command has finished the user can login to the “master” machine as root by running “starcluster sshmaster mynewcluster”. At this point the user has the (root) keys to the cluster just as they would with their own local resources.

StarCluster also has the ability to create multiple HPC clusters. Running the same “start” command again with a different tag-name will launch another HPC cluster in the cloud using the same settings as the previous run. If you’ve defined additional cluster templates in the configuration file these can optionally be used to specify a different group of settings to use when starting the next cluster.

Once the user has finished using a cluster they simply specify its tag-name to StarCluster’s “stop” command to shut it down. For the “mynewcluster” example above the command would be “starcluster stop mynewcluster”. The “stop” command will shutdown the entire cluster and terminate the billing period.

Automated HPC Cluster Configuration

StarCluster automatically configures each machine with the appropriate networking settings needed to communicate with the rest of the cluster. On top of this, StarCluster also fully configures password-less SSH communication for both the root user and a normal user on the cluster. Password-less SSH allows a user to login remotely between machines in the cluster without using a password. This is useful when administering the machines in the cloud and is also a necessary requirement for OpenMPI communication.

Most clusters usually have some form of a queuing system for submitting and load-balancing many computationally intensive tasks or “jobs” and StarCluster is no exception. Out-of-the-box, StarCluster installs and configures the open-source version of the Sun Grid Engine (SGE) queuing system for running distributed and parallel jobs on the cluster. A parallel queue is also configured by default that enables SGE to monitor and account for parallel tasks that use more than one machine in a single job.

Many parallel tasks are commonly written using the Message Passing Interface (MPI). For MPI users, StarCluster includes an SGE-aware OpenMPI installation that provides tight integration between the SGE job scheduler and MPI applications. This integration removes the need for users to specify a list of hosts to use when running an MPI job. Rather, OpenMPI will automatically fetch the host info it needs directly from SGE and begin execution. This allows all machines involved in the MPI calculation to be correctly accounted for by the queuing system.

Sharing files between machines without manually copying files around is a requirement for most HPC systems. Typically this is done using a shared folder via the network file system (NFS). StarCluster automatically configures /home on each “worker” machine of the cluster to be NFS-shared from the “master” machine. This allows users to see their files on any machine in the cluster and also provides a globally accessible place for jobs to read input data and write their finished results.

The StarCluster Amazon Machine Image (AMI)

Amazon Machine Images are used by EC2 to load an entire operating system along with various applications, libraries, and data onto a newly requested virtual machine. Machine images are publicly available for just about any Linux distribution, Solaris, and even Microsoft Windows. New images can be created with custom software configurations by launching a new virtual machine from an existing AMI, installing your new software, and then running an AMI creation process on the machine to create a new AMI.

StarCluster comes with a publicly available custom-tailored AMI, in both 32bit and 64bit flavors, that contains the entire OS and software configuration needed for an HPC cluster on Amazon. The StarCluster AMI is Ubuntu Linux 9.10 based and includes the Sun Grid Engine queuing system (open-source edition), the network file system, and OpenMPI along with common development tools and libraries to compile new software from source. The StarCluster AMI also includes a custom-compiled installation of the Automatically Tuned Linear Algebra Subroutines (ATLAS) and Linear Algebra PACKage (LAPACK) libraries that have been optimized for the larger high-CPU instance types on EC2. For numerical python users, the AMI contains both NumPy and SciPy installations that have been custom compiled against the optimized LAPACK/ATLAS installations. These optimized libraries provide a significant performance improvement when running linear algebra routines in the cloud.

Of course, StarCluster does not limit you to only these software installations. The StarCluster AMIs can easily be extended with your own software to create a brand-new AMI tailored for a specific need. To simplify the AMI creation process StarCluster provides a “createimage” command that will automatically create a new AMI from a running Amazon EC2 virtual machine in the cloud. This allows you to launch a single virtual machine, install your software, and easily create a new AMI from this machine. Using a new customized AMI with StarCluster is as simple as updating the configuration file with the new AMI’s identifier.

Using EBS Volumes for Persistent Storage

Amazon also provides a service called Elastic Block Storage (EBS) which allows users to create virtual block storage volumes that are similar in functionality to a USB pen-drive. These volumes can be anywhere from 1GB to 1TB in size and can be attached to a single virtual machine in the cloud at a time. The benefit of using these volumes is that any data written to EBS is automatically stored and persisted in the cloud even after all virtual machines have been terminated. This means the next time you start a cluster and attach the EBS volume, all of your data will be available as it was the last time you launched a cluster. Another benefit of using EBS volumes is that they’re easy to snapshot and duplicate which allows for backing up large amounts of data in the cloud.

StarCluster has the ability to utilize Amazon’s EBS volumes to provide persistent data storage for a given cluster. To use EBS with StarCluster you must first create an EBS volume. For new users, this process is simplified by using StarCluster’s “createvolume” command. This command automates the process of creating, partitioning, and formatting a new EBS volume.

Using a new volume with StarCluster involves adding additional volume settings to the configuration file. These settings specify the volume to use and the location on the cluster’s file system to attach the volume. This file system location is then NFS-shared from the “master” machine to all “worker” machines. StarCluster does not limit you to using a single EBS volume. Multiple EBS volumes can be configured, attached, and shared on the cluster. This allows up to several terabytes of data to be stored on the cluster.Getting Started with StarCluster

StarCluster is open-source software and can be downloaded for free from the StarCluster website at http://web.mit.edu/starcluster or from the Python Package Index (PyPI) at http://pypi.python.org/pypi/StarCluster.

UPDATE: We now have a video screencast of StarCluster in action that can be viewed here.

About the Author

Justin Riley is a software developer for the Software Tools for Academics and Researchers (STAR) group at the Massachusetts Institute of Technology (MIT). The STAR group seeks to bridge the divide between scientific research and the classroom by collaborating with faculty from MIT and other educational institutions to design software that explores core scientific research concepts. The STAR group works out of the Office of Educational Innovation and Technology (OEIT) under the Dean for Undergraduate Education (DUE) at MIT.

Justin has been developing with the Amazon cloud for the past three years and has successfully used the cloud to support the “Introduction to Modeling and Simulation” and “Intro to Parallel Programming for Multicore Machines using OpenMP and OpenMPI” courses at MIT. His work with StarCluster came directly from the need to provide a sustainable solution to the issues associated with bringing computational resources into the classroom. Justin created StarCluster to automate the process of locating, configuring, and maintaining computational resources without needing to be a 24/7 system administrator and without having to make a physical appearance to address potential hardware and software issues.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This