Drug Discovery and Development in the Cloud

By Bruce Maches

May 21, 2010

I hope that all of you have found the information in my blog so far to be of use to you out there. I have received a comment or two regarding potential approaches in dealing with public cloud validation and will provide an update on that topic in a future entry.

So far we have covered some basic facts on the life sciences companies and the regulatory environment they must exist in. I also explored some of the validation issues around using infrastructure related cloud technologies. In this entry I will start to guide you through the basic steps of drug discovery and development at a high level and point out areas where cloud computing can be leverage to facilitate the drug R&D process, reduce costs, and speed time to market. There is obviously a very broad topic and there is no way to effectively cover this subject in just one blog entry so this theme will be the core of the next several posts.

The pharmaceutical R&D process is a long and arduous procedure lasting up to 10 years or longer. It is also tremendously expensive with some new medications costing up to a billion to get from concept to market. There are a variety of factors that impact the cost and duration of the development effort. A few examples are: if a drug is a new one or a different indication (use) for an existing one, what therapeutic area it is targeted for (cancer, diabetes, etc), and what pathway or disease mechanism is the drug addressing. Given all of these factors, the drug development process can be very risky with many potential new drugs never making it to market after consuming hundreds of millions of dollars in research and development efforts. Industry figures vary but on average only 1 compound out of 5,000 or more make it from concept/discovery through development to the market place.

In layman’s terms, the drug development process can be broken into the following high-level activities:

  • Understanding the targeted disease mechanism within the body.
  • Finding a compound that will disrupt or modify that mechanism, initial FDA filing (patent clock is now ticking!).
  • Drug formulation, toxicity studies, and animal safety studies.
  • Initial human testing, further development work, dosing studies.
  • Large scale clinical testing for effectiveness and side effects.
  • Applying to the FDA for market approval.
  • Post approval monitoring.

Many of the applications used to support these pieces of the R&D process can be very compute and storage intensive making them great candidates for moving into the cloud. Given the nature of the drug development process, requirements for compute and storage resources can vary widely with huge peaks in demand as individual experiments or protocols are executed. This makes a strong case for cloud computing as the cost and time necessary to acquire and deploy these types of systems is simply prohibitive for many life science firms. Small companies clearly do not have the budget or resources available to provision these resources internally, and larger firms are dealing with on-going budget constraints with their R&D expenditures. Cloud computing is well suited for ‘bursty’ types of applications as the resources required can be provisioned on demand and at a much lower cost, reducing capital and operational expenses. Also, using cloud significantly cuts the time required to provision and qualify these resources, allowing life science companies to bring their products to market more quickly.

For this post I will concentrate on the up front set of activities around discovery and screening of new compounds and provide some examples of the different aspects of life sciences research that would benefit from the use of cloud computing.

A very commonly used technique in the biotech field is genomic sequencing, which is an extremely data and computationally intensive process. The technology involves looking for specific amino acid sequences in proteins or DNA samples. The amount of data generated is immense with many experimental runs producing gigabytes of data. All of this data has to be managed, stored and made available for follow on research and analysis. One of the applications used in this field is a piece of software called Basic Local Alignment Search Tool, or BLAST. This tool compares amino acid patterns in the sample being analyzed to a library of nucleotides looking for matches to certain sequences. This type of application is well suited to run in the cloud utilizing CPU and storage resources and then bring the results back to the researcher for further study. Tools such as Amazon’s Elastic Cloud Computing and Simple Storage Service (S3) are prime examples of offerings in this area. In addition, Amazon, along with other vendors, maintains copies of many of the publicly-available data sets on genomic and sequence data and makes them available to their clients as part of their overall cloud environment.

Another promising advance in the drug research process is what is called ‘in silico’ or virtual screening. The promise of virtual screening is that it will allow researchers to greatly increase the pace of finding new potential compounds while reducing costs for lab work and clinical trials. The screening process involves using an automated tool to test thousands of compounds for specific activity, either the inhibition or stimulation of a biochemical or biological mechanism. Running these tests requires the preparation of large numbers of assay plates each with hundreds or thousands of tiny wells. Compounds to be tested are placed in the wells using a pipette mechanism, processed by robotic labs and the corresponding reaction recorded. Using this high throughput technique allows researchers to screen thousands to millions of compounds but it can be costly and time consuming. Virtual screening provides the ability to model the desired reaction using tools such as the protein docking algorithm EADock greatly reducing the number of compound combinations needed to be tested. Leveraging cloud resources to perform ‘in silico’ testing will also cut costs and speed time to market.

Other potential applications for cloud computing include research areas such as protein docking simulations, data mining, and molecular modeling. I will reserve those areas for a future entry.

IT organizations supporting life science R&D functions should work towards creating a service based model for how they provide the resources required for these computational and storage thirsty applications. By understanding the underlying cost models and providing clear standards on how/when/where cloud infrastructure will be deployed, the IT group can better be able to properly manage and secure cloud based resources.

Continued advances in the field of drug discovery will exponentially increase the amount of data generated during the discovery process. IT organizations or vendors that can supply the needed cloud based infrastructure services in a secure and reliable manner will certainly do well in this space. Cloud computing also provides significant flexibility to the researcher as they are now free to explore avenues of research that would not have been feasible before the advent of cloud computing.

Cloud computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing an indispensible tool for researchers, allowing them to focus on the ‘what’ of science and not the ‘how.’ Having the resources to do better research at this phase of the drug development process will also reduce time and expense in the later phases. My next post will expand further on the challenges and opportunities in the discovery phase of the pharmaceutical research process.

I would love to hear from you if you have any questions or comments. Feel free to contact me at brmaches@brmachesassociates.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

Thus week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high perform Read more…

By John Russell

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

Student Clusterers Demolish HPCG Record! Nanyang Sweeps Benchmarks

November 16, 2017

Nanyang pulled off the always difficult double-play at this year’s SC Student Cluster Competition. The plucky team from Singapore posted a world record LINPACK, thus taking the Highest LINPACK Award, but also managed t Read more…

By Dan Olds

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s at SC17 in Denver. The previous record, established by German Read more…

By Dan Olds

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

Thus week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projec Read more…

By John Russell

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Leading Solution Providers

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This