Drug Discovery and Development in the Cloud

By Bruce Maches

May 21, 2010

I hope that all of you have found the information in my blog so far to be of use to you out there. I have received a comment or two regarding potential approaches in dealing with public cloud validation and will provide an update on that topic in a future entry.

So far we have covered some basic facts on the life sciences companies and the regulatory environment they must exist in. I also explored some of the validation issues around using infrastructure related cloud technologies. In this entry I will start to guide you through the basic steps of drug discovery and development at a high level and point out areas where cloud computing can be leverage to facilitate the drug R&D process, reduce costs, and speed time to market. There is obviously a very broad topic and there is no way to effectively cover this subject in just one blog entry so this theme will be the core of the next several posts.

The pharmaceutical R&D process is a long and arduous procedure lasting up to 10 years or longer. It is also tremendously expensive with some new medications costing up to a billion to get from concept to market. There are a variety of factors that impact the cost and duration of the development effort. A few examples are: if a drug is a new one or a different indication (use) for an existing one, what therapeutic area it is targeted for (cancer, diabetes, etc), and what pathway or disease mechanism is the drug addressing. Given all of these factors, the drug development process can be very risky with many potential new drugs never making it to market after consuming hundreds of millions of dollars in research and development efforts. Industry figures vary but on average only 1 compound out of 5,000 or more make it from concept/discovery through development to the market place.

In layman’s terms, the drug development process can be broken into the following high-level activities:

  • Understanding the targeted disease mechanism within the body.
  • Finding a compound that will disrupt or modify that mechanism, initial FDA filing (patent clock is now ticking!).
  • Drug formulation, toxicity studies, and animal safety studies.
  • Initial human testing, further development work, dosing studies.
  • Large scale clinical testing for effectiveness and side effects.
  • Applying to the FDA for market approval.
  • Post approval monitoring.

Many of the applications used to support these pieces of the R&D process can be very compute and storage intensive making them great candidates for moving into the cloud. Given the nature of the drug development process, requirements for compute and storage resources can vary widely with huge peaks in demand as individual experiments or protocols are executed. This makes a strong case for cloud computing as the cost and time necessary to acquire and deploy these types of systems is simply prohibitive for many life science firms. Small companies clearly do not have the budget or resources available to provision these resources internally, and larger firms are dealing with on-going budget constraints with their R&D expenditures. Cloud computing is well suited for ‘bursty’ types of applications as the resources required can be provisioned on demand and at a much lower cost, reducing capital and operational expenses. Also, using cloud significantly cuts the time required to provision and qualify these resources, allowing life science companies to bring their products to market more quickly.

For this post I will concentrate on the up front set of activities around discovery and screening of new compounds and provide some examples of the different aspects of life sciences research that would benefit from the use of cloud computing.

A very commonly used technique in the biotech field is genomic sequencing, which is an extremely data and computationally intensive process. The technology involves looking for specific amino acid sequences in proteins or DNA samples. The amount of data generated is immense with many experimental runs producing gigabytes of data. All of this data has to be managed, stored and made available for follow on research and analysis. One of the applications used in this field is a piece of software called Basic Local Alignment Search Tool, or BLAST. This tool compares amino acid patterns in the sample being analyzed to a library of nucleotides looking for matches to certain sequences. This type of application is well suited to run in the cloud utilizing CPU and storage resources and then bring the results back to the researcher for further study. Tools such as Amazon’s Elastic Cloud Computing and Simple Storage Service (S3) are prime examples of offerings in this area. In addition, Amazon, along with other vendors, maintains copies of many of the publicly-available data sets on genomic and sequence data and makes them available to their clients as part of their overall cloud environment.

Another promising advance in the drug research process is what is called ‘in silico’ or virtual screening. The promise of virtual screening is that it will allow researchers to greatly increase the pace of finding new potential compounds while reducing costs for lab work and clinical trials. The screening process involves using an automated tool to test thousands of compounds for specific activity, either the inhibition or stimulation of a biochemical or biological mechanism. Running these tests requires the preparation of large numbers of assay plates each with hundreds or thousands of tiny wells. Compounds to be tested are placed in the wells using a pipette mechanism, processed by robotic labs and the corresponding reaction recorded. Using this high throughput technique allows researchers to screen thousands to millions of compounds but it can be costly and time consuming. Virtual screening provides the ability to model the desired reaction using tools such as the protein docking algorithm EADock greatly reducing the number of compound combinations needed to be tested. Leveraging cloud resources to perform ‘in silico’ testing will also cut costs and speed time to market.

Other potential applications for cloud computing include research areas such as protein docking simulations, data mining, and molecular modeling. I will reserve those areas for a future entry.

IT organizations supporting life science R&D functions should work towards creating a service based model for how they provide the resources required for these computational and storage thirsty applications. By understanding the underlying cost models and providing clear standards on how/when/where cloud infrastructure will be deployed, the IT group can better be able to properly manage and secure cloud based resources.

Continued advances in the field of drug discovery will exponentially increase the amount of data generated during the discovery process. IT organizations or vendors that can supply the needed cloud based infrastructure services in a secure and reliable manner will certainly do well in this space. Cloud computing also provides significant flexibility to the researcher as they are now free to explore avenues of research that would not have been feasible before the advent of cloud computing.

Cloud computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing an indispensible tool for researchers, allowing them to focus on the ‘what’ of science and not the ‘how.’ Having the resources to do better research at this phase of the drug development process will also reduce time and expense in the later phases. My next post will expand further on the challenges and opportunities in the discovery phase of the pharmaceutical research process.

I would love to hear from you if you have any questions or comments. Feel free to contact me at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Virga: Australia’s New HPC and AI Powerhouse

July 11, 2024

Australia has officially added another supercomputer to the TOP500 list with the implementation of Virga. Officially coming online in June 2024, Virga is the newest HPC system to come out of the Australian Commonwealth S Read more…

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and implementation phases of the Quantum Quantum Science and Technolo Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the software, and selecting the best user interface. The National Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three of the 10 highest-ranking Top500 systems, but some other ne Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Leading Solution Providers

Contributors

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire