Drug Discovery and Development in the Cloud

By Bruce Maches

May 21, 2010

I hope that all of you have found the information in my blog so far to be of use to you out there. I have received a comment or two regarding potential approaches in dealing with public cloud validation and will provide an update on that topic in a future entry.

So far we have covered some basic facts on the life sciences companies and the regulatory environment they must exist in. I also explored some of the validation issues around using infrastructure related cloud technologies. In this entry I will start to guide you through the basic steps of drug discovery and development at a high level and point out areas where cloud computing can be leverage to facilitate the drug R&D process, reduce costs, and speed time to market. There is obviously a very broad topic and there is no way to effectively cover this subject in just one blog entry so this theme will be the core of the next several posts.

The pharmaceutical R&D process is a long and arduous procedure lasting up to 10 years or longer. It is also tremendously expensive with some new medications costing up to a billion to get from concept to market. There are a variety of factors that impact the cost and duration of the development effort. A few examples are: if a drug is a new one or a different indication (use) for an existing one, what therapeutic area it is targeted for (cancer, diabetes, etc), and what pathway or disease mechanism is the drug addressing. Given all of these factors, the drug development process can be very risky with many potential new drugs never making it to market after consuming hundreds of millions of dollars in research and development efforts. Industry figures vary but on average only 1 compound out of 5,000 or more make it from concept/discovery through development to the market place.

In layman’s terms, the drug development process can be broken into the following high-level activities:

  • Understanding the targeted disease mechanism within the body.
  • Finding a compound that will disrupt or modify that mechanism, initial FDA filing (patent clock is now ticking!).
  • Drug formulation, toxicity studies, and animal safety studies.
  • Initial human testing, further development work, dosing studies.
  • Large scale clinical testing for effectiveness and side effects.
  • Applying to the FDA for market approval.
  • Post approval monitoring.

Many of the applications used to support these pieces of the R&D process can be very compute and storage intensive making them great candidates for moving into the cloud. Given the nature of the drug development process, requirements for compute and storage resources can vary widely with huge peaks in demand as individual experiments or protocols are executed. This makes a strong case for cloud computing as the cost and time necessary to acquire and deploy these types of systems is simply prohibitive for many life science firms. Small companies clearly do not have the budget or resources available to provision these resources internally, and larger firms are dealing with on-going budget constraints with their R&D expenditures. Cloud computing is well suited for ‘bursty’ types of applications as the resources required can be provisioned on demand and at a much lower cost, reducing capital and operational expenses. Also, using cloud significantly cuts the time required to provision and qualify these resources, allowing life science companies to bring their products to market more quickly.

For this post I will concentrate on the up front set of activities around discovery and screening of new compounds and provide some examples of the different aspects of life sciences research that would benefit from the use of cloud computing.

A very commonly used technique in the biotech field is genomic sequencing, which is an extremely data and computationally intensive process. The technology involves looking for specific amino acid sequences in proteins or DNA samples. The amount of data generated is immense with many experimental runs producing gigabytes of data. All of this data has to be managed, stored and made available for follow on research and analysis. One of the applications used in this field is a piece of software called Basic Local Alignment Search Tool, or BLAST. This tool compares amino acid patterns in the sample being analyzed to a library of nucleotides looking for matches to certain sequences. This type of application is well suited to run in the cloud utilizing CPU and storage resources and then bring the results back to the researcher for further study. Tools such as Amazon’s Elastic Cloud Computing and Simple Storage Service (S3) are prime examples of offerings in this area. In addition, Amazon, along with other vendors, maintains copies of many of the publicly-available data sets on genomic and sequence data and makes them available to their clients as part of their overall cloud environment.

Another promising advance in the drug research process is what is called ‘in silico’ or virtual screening. The promise of virtual screening is that it will allow researchers to greatly increase the pace of finding new potential compounds while reducing costs for lab work and clinical trials. The screening process involves using an automated tool to test thousands of compounds for specific activity, either the inhibition or stimulation of a biochemical or biological mechanism. Running these tests requires the preparation of large numbers of assay plates each with hundreds or thousands of tiny wells. Compounds to be tested are placed in the wells using a pipette mechanism, processed by robotic labs and the corresponding reaction recorded. Using this high throughput technique allows researchers to screen thousands to millions of compounds but it can be costly and time consuming. Virtual screening provides the ability to model the desired reaction using tools such as the protein docking algorithm EADock greatly reducing the number of compound combinations needed to be tested. Leveraging cloud resources to perform ‘in silico’ testing will also cut costs and speed time to market.

Other potential applications for cloud computing include research areas such as protein docking simulations, data mining, and molecular modeling. I will reserve those areas for a future entry.

IT organizations supporting life science R&D functions should work towards creating a service based model for how they provide the resources required for these computational and storage thirsty applications. By understanding the underlying cost models and providing clear standards on how/when/where cloud infrastructure will be deployed, the IT group can better be able to properly manage and secure cloud based resources.

Continued advances in the field of drug discovery will exponentially increase the amount of data generated during the discovery process. IT organizations or vendors that can supply the needed cloud based infrastructure services in a secure and reliable manner will certainly do well in this space. Cloud computing also provides significant flexibility to the researcher as they are now free to explore avenues of research that would not have been feasible before the advent of cloud computing.

Cloud computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing an indispensible tool for researchers, allowing them to focus on the ‘what’ of science and not the ‘how.’ Having the resources to do better research at this phase of the drug development process will also reduce time and expense in the later phases. My next post will expand further on the challenges and opportunities in the discovery phase of the pharmaceutical research process.

I would love to hear from you if you have any questions or comments. Feel free to contact me at brmaches@brmachesassociates.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series and timeliness in general, according to Paul Morin, directo Read more…

By Ken Chiacchia and Tiffany Jolley

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Perverse Incentives? How Economics (Mis-)shaped Academic Science

July 12, 2017

The unintended consequences of how we fund academic research—in the U.S. and elsewhere—are strangling innovation, putting universities into debt and creatin Read more…

By Ken Chiacchia, Senior Science Writer, Pittsburgh Supercomputing Center

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This