Drug Discovery and Development in the Cloud

By Bruce Maches

May 21, 2010

I hope that all of you have found the information in my blog so far to be of use to you out there. I have received a comment or two regarding potential approaches in dealing with public cloud validation and will provide an update on that topic in a future entry.

So far we have covered some basic facts on the life sciences companies and the regulatory environment they must exist in. I also explored some of the validation issues around using infrastructure related cloud technologies. In this entry I will start to guide you through the basic steps of drug discovery and development at a high level and point out areas where cloud computing can be leverage to facilitate the drug R&D process, reduce costs, and speed time to market. There is obviously a very broad topic and there is no way to effectively cover this subject in just one blog entry so this theme will be the core of the next several posts.

The pharmaceutical R&D process is a long and arduous procedure lasting up to 10 years or longer. It is also tremendously expensive with some new medications costing up to a billion to get from concept to market. There are a variety of factors that impact the cost and duration of the development effort. A few examples are: if a drug is a new one or a different indication (use) for an existing one, what therapeutic area it is targeted for (cancer, diabetes, etc), and what pathway or disease mechanism is the drug addressing. Given all of these factors, the drug development process can be very risky with many potential new drugs never making it to market after consuming hundreds of millions of dollars in research and development efforts. Industry figures vary but on average only 1 compound out of 5,000 or more make it from concept/discovery through development to the market place.

In layman’s terms, the drug development process can be broken into the following high-level activities:

  • Understanding the targeted disease mechanism within the body.
  • Finding a compound that will disrupt or modify that mechanism, initial FDA filing (patent clock is now ticking!).
  • Drug formulation, toxicity studies, and animal safety studies.
  • Initial human testing, further development work, dosing studies.
  • Large scale clinical testing for effectiveness and side effects.
  • Applying to the FDA for market approval.
  • Post approval monitoring.

Many of the applications used to support these pieces of the R&D process can be very compute and storage intensive making them great candidates for moving into the cloud. Given the nature of the drug development process, requirements for compute and storage resources can vary widely with huge peaks in demand as individual experiments or protocols are executed. This makes a strong case for cloud computing as the cost and time necessary to acquire and deploy these types of systems is simply prohibitive for many life science firms. Small companies clearly do not have the budget or resources available to provision these resources internally, and larger firms are dealing with on-going budget constraints with their R&D expenditures. Cloud computing is well suited for ‘bursty’ types of applications as the resources required can be provisioned on demand and at a much lower cost, reducing capital and operational expenses. Also, using cloud significantly cuts the time required to provision and qualify these resources, allowing life science companies to bring their products to market more quickly.

For this post I will concentrate on the up front set of activities around discovery and screening of new compounds and provide some examples of the different aspects of life sciences research that would benefit from the use of cloud computing.

A very commonly used technique in the biotech field is genomic sequencing, which is an extremely data and computationally intensive process. The technology involves looking for specific amino acid sequences in proteins or DNA samples. The amount of data generated is immense with many experimental runs producing gigabytes of data. All of this data has to be managed, stored and made available for follow on research and analysis. One of the applications used in this field is a piece of software called Basic Local Alignment Search Tool, or BLAST. This tool compares amino acid patterns in the sample being analyzed to a library of nucleotides looking for matches to certain sequences. This type of application is well suited to run in the cloud utilizing CPU and storage resources and then bring the results back to the researcher for further study. Tools such as Amazon’s Elastic Cloud Computing and Simple Storage Service (S3) are prime examples of offerings in this area. In addition, Amazon, along with other vendors, maintains copies of many of the publicly-available data sets on genomic and sequence data and makes them available to their clients as part of their overall cloud environment.

Another promising advance in the drug research process is what is called ‘in silico’ or virtual screening. The promise of virtual screening is that it will allow researchers to greatly increase the pace of finding new potential compounds while reducing costs for lab work and clinical trials. The screening process involves using an automated tool to test thousands of compounds for specific activity, either the inhibition or stimulation of a biochemical or biological mechanism. Running these tests requires the preparation of large numbers of assay plates each with hundreds or thousands of tiny wells. Compounds to be tested are placed in the wells using a pipette mechanism, processed by robotic labs and the corresponding reaction recorded. Using this high throughput technique allows researchers to screen thousands to millions of compounds but it can be costly and time consuming. Virtual screening provides the ability to model the desired reaction using tools such as the protein docking algorithm EADock greatly reducing the number of compound combinations needed to be tested. Leveraging cloud resources to perform ‘in silico’ testing will also cut costs and speed time to market.

Other potential applications for cloud computing include research areas such as protein docking simulations, data mining, and molecular modeling. I will reserve those areas for a future entry.

IT organizations supporting life science R&D functions should work towards creating a service based model for how they provide the resources required for these computational and storage thirsty applications. By understanding the underlying cost models and providing clear standards on how/when/where cloud infrastructure will be deployed, the IT group can better be able to properly manage and secure cloud based resources.

Continued advances in the field of drug discovery will exponentially increase the amount of data generated during the discovery process. IT organizations or vendors that can supply the needed cloud based infrastructure services in a secure and reliable manner will certainly do well in this space. Cloud computing also provides significant flexibility to the researcher as they are now free to explore avenues of research that would not have been feasible before the advent of cloud computing.

Cloud computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing an indispensible tool for researchers, allowing them to focus on the ‘what’ of science and not the ‘how.’ Having the resources to do better research at this phase of the drug development process will also reduce time and expense in the later phases. My next post will expand further on the challenges and opportunities in the discovery phase of the pharmaceutical research process.

I would love to hear from you if you have any questions or comments. Feel free to contact me at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

Update (Jan. 21): HPCwire has received confirmation from Atos that the system will have a peak speed of 537.6 teraflops, not 320 teraflops as had previously been reported. We plan to report additional details as we recei Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This