Palm Trees, HPC and Virtualization

By Wolfgang Gentzsch

May 21, 2010

We were lounging in the paradise-like ambience of the beautiful conference hotel in Hammamet, Tunisia, earlier this week, under a verdant canopy of palm trees near the beach — not a cloud to be seen. The AICCSA International Conference on Computer Systems and Applications was in full swing, where Dr. Mazin Yousif just presented the keynote on cloud computing.

Shortly after Mazin joined Intel in 2000 to work on InfiniBand, I remember, we worked together on self-adaptable grid architecture. He then got into HPC when he was the chair of the Management Working Group (MgtWG) of the InfiniBand Trade Association (IBTA) which defined the management architecture for the InfiniBand Architecture (IBA). For many of the TOP500 HPC systems today, InfiniBand is the underlying interconnect technology, optimized for high-bandwidth low-latency communication.

Through InfiniBand, HPC applications, after establishing the interconnect channel, have direct access to the hardware, bypassing the operating system and the device drivers, reducing latency to a few hundred nanoseconds. (Ethernet, on the other hand, where communication moves through the TCP transport layer, IP network layer, link layer and physical layer, is an order of magnitude slower). I found that Mazin, equipped with this expertise, was the ideal person to answer my question about how virtualization in cloud computing really affects the performance of our HPC applications. The following is the result of our conversation HPC and virtualization — under the palms.

Wolfgang Gentzsch: We hear a lot about the additional overhead caused by virtualization, these days. How does virtualization really affect the performance of HPC applications?

Mazin Yousif: To answer this question, we first should look at the role of the VMM (the virtual machine monitor, also called hypervisor). The VMM sits directly on top of the hardware, abstracting all the hardware resources into virtual resources that get aggregated and launched as Virtual Machines (VMs, the containers that run the whole software stack). Usually, the VMM also hosts the device drivers for accessing I/O resources, causing extra overhead for I/O requests.

Gentzsch: Does this mean that the performance of mainly compute-intensive applications wouldn’t be affected by the virtualization?

Yousif: Yes, if compute-intensive applications run completely within the VM with very limited enters to and exits from the VMM, the impact on the overall performance is very minimal.

Gentzsch: … and I/O-intensive applications?

Yousif: There, the overhead is going to be noticeable because all I/O requests inside the VM cause jumps to the VMM, where the I/O device drivers are accessed, and enabling access to the physical I/O resource. This usually causes an extra overhead of a few microseconds. In a more realistic HPC scenario with a mix of compute- and I/O-intensive operations, the amount of overhead is certainly somewhere in-between.

Gentzsch: Could I avoid this overhead at all?

Yousif: May be not completely, but in principle, yes. First, VM vendors could further optimize the VMM, for example by reducing the critical path for an I/O operation within the VMM code. Second, instead of going through the VMM, an I/O device could be directly assigned to a VM which would eliminate the overhead caused by the VMM. This can be achieved by configuring the VMM, resulting in a much better I/O performance. The disadvantage however is that now you need an I/O device for every VM, instead of sharing that device among several VMs, as is usual.

Gentzsch: … but isn’t it better to optimize the rate of completing HPC transactions, rather than focusing on latency alone?

Yousif: Indeed. I see rate as more important than latency alone since rate involves both bandwidth and latency (=BW/latency). Virtualization not only impacts latency, but also impacts bandwidth as well. As before, in a mainly compute-intensive workload that fits in the allocated VM memory, rate will not see any depreciation compared to running the same workload on physical resources. In a mixed-traffic workload, relying on an assigned I/O device helps considerably here.

Gentzsch: When you assign a number of VMs to run an HPC workload, would it be better to keep the environment as is for the duration of the run or should it be adapted to track workload resources’ requirements changes?

Yousif: I see it as necessary to adapt the number and configuration of VMs based on the workload’s resources requirements, as well as the service-level agreements the owner of the workload signed with the cloud provider. To track workload changes, the VMM includes provisions to scale resources assigned to a VM up or down based on that VM’s resource needs. If the elasticity provided by the VMM is not sufficient, then other capabilities such as VMware’s Distributed Resource Scheduling along with VMotion can do the trick.

Gentzsch: So what would I have to do, as an HPC user?

Yousif: If you have a feel about the mix of compute versus I/O intensity in your HPC application, you can decide whether to assign an I/O device directly to a VM or not. If, for example, your working set fits completely into the main memory allocated to a VM, there is obviously no I/O, no page faults, no disc swaps, and thus no overhead.

Gentzsch: But that means that I have to have the ability to configure my VMM. I understand that this can be done in my private cloud, but how would I do this in IBM’s public cloud, for example?

Yousif: Today you can’t. Public cloud service providers currently do not allow HPC end-users to decide whether to assign an I/O device per VM or to share it among several VMs. If there is a real need for this, the HPC community should request this feature from the public cloud service providers to enable HPC in the public clouds.

Gentzsch: So what would be your conclusion and recommendation?

Yousif: I do not see major obstacles running HPC workloads in virtualized environments as there are ways to mitigate the overhead incurred through the VMM. But to cater further to the HPC community, we urge the cloud providers to incorporate running IBA in a virtualized environment in their cloud deployments, which could be one of the best choices for the HPC community as, first, IBA is much easier to virtualize than other I/O technologies, and second, at the same time it offers much better performance than other I/O technologies. Cloud providers currently do not offer IBA support in their cloud deployments.

Addendum on Virtualization

When I checked the dictionary to learn the meaning of virtual, here is what I found, “Vir•tu•al (adjective): existing in essence or effect, though not in actual fact.” Now, virtual systems are systems that: (i) incorporate hardware-level abstraction of physical resources including processors, memory, chipset, I/O devices and others ; and (ii) encapsulate all OS & application state. This is done through the VMM virtualization software that: (i) provides extra level of indirection and decouples hardware & OS; (ii) multiplexes physical hardware across multiple Guest VMs; (iii) provides better strong isolation between VMs; and (iv) manages physical resources and improves utilization.

Virtualization provides a great deal of benefits including, but not limited to, (i) considerably increasing utilization from <15 percent to much higher numbers that can reach 90 percent; (ii) through isolation, it allows to run multiple VMs on a single physical host, and any software malware or crashes in one VM do not affect other VMs; (iii) through encapsulation, it is possible to have the entire VM (including OS, applications, data, memory and device state) as a file that will allow us to, for example, take snapshots, clones, backup, capture a VM state on the fly and restore to point-in-time; (iv) reduce total cost of ownership; and many more.

In terms of uses, examples include test and development; server consolidation and containment; and enterprise virtual desktops.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Supercomputer Research Reveals Star Cluster Born Outside Our Galaxy

July 11, 2020

The Milky Way is our galactic home, containing our solar system and continuing into a giant band of densely packed stars that stretches across clear night skies around the world – but, it turns out, not all of those st Read more…

By Oliver Peckham

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprised of Intel Xeon processors and Nvidia A100 GPUs, and featuri Read more…

By Tiffany Trader

Xilinx Announces First Adaptive Computing Challenge

July 9, 2020

A new contest is challenging the computing world. Xilinx has announced the first Xilinx Adaptive Computing Challenge, a competition that will task developers and startups with finding creative workload acceleration solutions. Xilinx is running the Adaptive Computing Challenge in partnership with, a developing community... Read more…

By Staff report

Reviving Moore’s Law? LBNL Researchers See Promise in Heterostructure Oxides

July 9, 2020

The reality of Moore’s law’s decline is no longer doubted for good empirical reasons. That said, never say never. Recent work by Lawrence Berkeley National Laboratory researchers suggests heterostructure oxides may b Read more…

By John Russell

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: 1) Industries of the Future (IotF), chaired be Dario Gil (d Read more…

By John Russell

AWS Solution Channel

Best Practices for Running Computational Fluid Dynamics (CFD) Workloads on AWS

The scalable nature and variable demand of CFD workloads makes them well-suited for a cloud computing environment. Many of the AWS instance types, such as the compute family instance types, are designed to include support for this type of workload.  Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Penguin Computing Brings Cascade Lake-AP to OCP Form Factor

July 7, 2020

Penguin Computing, a subsidiary of SMART Global Holdings, Inc., announced yesterday (July 6) a new Tundra server, Tundra AP, that is the first to implement the Intel Xeon Scalable 9200 series processors (codenamed Cascad Read more…

By Tiffany Trader

Max Planck Society Begins Installation of Liquid-Cooled Supercomputer from Lenovo

July 9, 2020

Lenovo announced today that it is supplying a new high performance computer to the Max Planck Society, one of Germany's premier research organizations. Comprise Read more…

By Tiffany Trader

President’s Council Targets AI, Quantum, STEM; Recommends Spending Growth

July 9, 2020

Last week the President Council of Advisors on Science and Technology (PCAST) met (webinar) to review policy recommendations around three sub-committee reports: Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Q&A: HLRS’s Bastian Koller Tackles HPC and Industry in Germany and Europe

July 6, 2020

In this exclusive interview for HPCwire – sadly not face to face – Steve Conway, senior advisor for Hyperion Research, talks with Dr.-Ing Bastian Koller about the state of HPC and its collaboration with Industry in Europe. Koller is a familiar figure in HPC. He is the managing director at High Performance Computing Center Stuttgart (HLRS) and also serves... Read more…

By Steve Conway, Hyperion

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Leading Solution Providers


Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This