Cray Unveils “Baker” Supercomputer

By Michael Feldman

May 25, 2010

Supercomputer maker Cray did a pre-launch of sorts for its upcoming “Baker” supercomputer on Tuesday, giving the machine its official product designation: the XE6. Although the company won’t be shipping the hardware until later this year, there’s already a backlog of orders for the petascale machines, and Cray is setting the stage for a big debut.

The XE6 represents Cray’s next-generation supercomputer that is being billed as the first x86-based machine designed to deliver sustained petaflops performance across a range of HPC applications. Although the new super is employing the same AMD CPUs as the current generation XT6 (thus retaining the ‘6’ designation for the 6th generation Opterons), the new Gemini system network provides the foundation for much more scalability and performance.

Cray is saying the new architecture will scale up to 100 teraflops of raw performance and be able to offer multiple petaflops for those applications that can take advantage of hundreds of thousands or even a million CPU cores. As such, the XE6 becomes Cray’s top-end offering for production supercomputing, costing $2 million-plus for the privilege of owning one.

The XE6 inherits a lot of its basic features from the XT6 line. Most importantly, the Opteron 6100 (Magny-Cours) compute blades are shared between the two systems. As a consequence, an XT6 installation will be able to be upgraded to an XE6 by swapping out the SeaStar interconnect hardware with Gemini parts. Likewise, an XT5 system can be upgraded to an “XE5” in the same manner.

The recently retooled Cray Linux Environment (CLE), which includes a cluster compatibility mode for ISV codes, will also be the operating systems in the XE6. Although the new OS is advertised as supporting at least 500K cores, its true upper limit will probably be tested after the first big XE6 systems are deployed.

As mentioned above, the key new feature of the design is Gemini, which provides the foundation for the XE6’s high-end capabilities. “The Gemini interconnect is really the interconnect that we’ve designed for the multicore era,” says Barry Bolding, Cray vice president of the Scalable Systems group. “It pushes those boundaries much further than the older SeaStar interconnect could do.”

Gemini supports a “high-radix” network and delivers extreme messaging rates (100 times better than SeaStar) as well as much improved latency (three times better than SeaStar). In general, a high-radix router implementation uses many narrow ports rather than fewer, wider ports. Although there are some challenges involved, the design is more able to convert pin bandwidth to reduced latency, and do so at a reduced cost. In this case, the better performance allows the XE6 to scale up to a million CPU cores and beyond.

The switch from SeaStar to Gemini is a big move for Cray, representing the first such architectural change in five years. It is similar to the older SeaStar network only inasmuch as it shares the same 3D torus topology and switchless design. Gemini actually has much more in common with the interconnect used in Cray’s X2 (Black Widow) vector-based supercomputer, and is basically an updated version of that design. According to Bolding, the company believes this high-radix architecture will be one Cray relies on for the next decade or so in all its top-of-the line supers.

One of the more interesting features enabled by Gemini is support for a global address space. Global memory is a well-known feature in SMP machines, but for distributed memory systems, has only been accomplished through software/hardware virtualization (for example, ScaleMP and 3Leaf). According to Bolding, the XE6 will be the first HPC machine with a global addressing capability in an MPP design.

Global memory support in the Gemini hardware allows an application to grab a piece of memory on a non-local node and treat it as its own (and without having to bother the OS). PGAS languages like Co-Array Fortran (CAF) and Unified Parallel C (UPC) or even SHMEM, can be used to write parallel applications that take advantage of this shared memory layout. In general, these languages enable a more straightforward way to treat data on big memory machines compared to message passing. And although not nearly as popular as the MPI-style programming, PGAS languages may become more popular as systems scale beyond the practical capabilities of message shuffling codes. Cray’s Chapel language, developed under DARPA’s High Agency’s High Productivity Computing Systems program, represents the company’s own programming environment that supports a partitioned global address space.

Besides global address support, Gemini also has smarts in it to recover from link failures and perform adaptive routing. For example, since there are multiple communication channels per node, degradation on one channel can be accommodated by rerouting traffic. A related capability enables a warm swapping of blades (without a system shutdown). This is accomplished by quieting network traffic, rerouting the packets, replacing the blade, and then restoring network traffic.

The Gemini chip itself is built by TSMC on a 90nm process node. It’s larger than the SeaStar die, but each Gemini chip can manage two nodes, so it takes the place of two SeaStar processors. According to Bolding, Gemini does use slightly more power than the two chips it replaces, but the added functionality and performance are well worth the extra few watts.

Cray already has some deep-pocketed customers lined up for XE6 installations, including the DOE’s National Energy Research Scientific Computing Center (NERSC), the High-End Computing Terascale Resource (HECToR) in the UK, the Korea Meteorological Administration (KMA), the National Nuclear Security Administration (NNSA), and the National Oceanic and Atmospheric Administration (NOAA). Cray was also tapped to deliver three XE6 supers to the US Air Force Research Laboratory, the Arctic Region Supercomputing Center and the US Army Engineer Research and Development Center. All told, more than $200 million worth of XE6 systems are on backorder.

Although the exact date that the XE6 machines will be ready for shipment is still up in the air, Cray is sticking to its previous Q3 timeframe for a production launch. And since the company is trumpeting the new super this week, it’s a good bet that it doesn’t foresee any showstoppers that would derail this schedule.

That, of course, would be good news for the supercomputer maker. First quarter sales were off to a slow start, so if the company expects to hit its yearly revenue goal of $305 to $325 million, it’s going to need to realize a significant chunk of XE6 sales in the second half of the 2010. Since a number of the announced installations are scheduled for deployment toward the end of the year, it’s going to be a photo finish for Cray.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This