HPC Innovator’s Work Spans Two Continents

By Nicole Hemsoth

May 28, 2010

Over the past two decades, Dr. Ashwini Nanda has been at the center of some of the most cutting-edge HPC projects and initiatives in the world.  At IBM’s T.J. Watson Research Center, in New York, Dr. Nanda led the development of the Cell processor-based  systems (QS20, QS21, and QS22 blades) and software technologies for high performance computing. That work culminated in the construction of the Roadrunner supercomputer for Los Alamos National Laboratory. Later, as the head of Computational Research Laboratories (CRL) in Pune, India, he directed the development of the “Eka” HPC cluster that, in 2007, held the title of Asia’s fastest supercomputer. He also established the shared memory systems group at IBM Research, worked on the Amazon superscalar architecture at Texas Instruments, and developed parallel computers for India’s missile defense systems at Wipro, Bangalore.

Recently he moved back to India, where he founded HPC Links, a company that offers parallel programming software tools and services for the global high performance computing community. We got the opportunity to ask Dr. Nanda about how he sees the HPC industry today, how it’s changing, and what led him to start up his company.

HPCwire: Maybe we can start with some of your thoughts about the development of high performance computing in India. What are the principal challenges in building the country’s HPC capability? And how do you see the way forward for HPC and supercomputing in India — for both vendors and users?
 
Ashwini Nanda: India has less than 1 percent of the compute power in the global TOP500 supercomputing list today. This tiny share of the pie is not indicative of the financial and high-tech might of India. The gap indicates there is significant room for growth in HPC infrastructure in the country. The gap one sees today is perhaps due to the lack of broad awareness of the benefits of HPC to scientific/technical research and to business enterprises. This is despite the commendable progress made by organizations such as CDAC, CRL, SERC/IISc and HiPC in spreading HPC awareness in the country.

India’s per capita spending in high performance computing is negligible compared to the US, Japan and Germany, and for that matter compared even to China, Spain and Russia. The Unique ID (Adhaar) project of the government will likely fuel growth in HPC related to data mining, consummer security and national security. The government has procured quite a few HPC clusters for weather and climate prediction which would foster research and application development in these areas. India has very successful government enterprises in nuclear energy, space and defence, which would benefit tremendously from the use of HPC. The US counterparts in these sectors are the prime movers of the HPC industry there. The Indian government has the financial strength and must spend heavily in HPC in order to make these sectors globally competitive.
 
India has vibrant pharmaceutical, financial, entertainment and manufacturing industries, all of whom would gain significant productivity and competitiveness by using HPC. We built the Eka machine at CRL soley with private investment from Tata. The other industrial powerhouses in India have the financial means, and they will likely follow suit once they see the benefits of HPC to their business. Talking to leaders from government, academia and industry across the country, one can sense a growing awareness of the potential of HPC, which I believe will translate into a faster pace of growth in HPC infrastructure and services during the next five years or so in India. When that happens, it will benefit the multinational vendors as well as the local vendors.

HPCwire: What do you think will be the role of cloud computing for HPC users in India?

Nanda: Culturally, and economically, reuse and sharing of resources are well accepted in the Indian society. Once the users discover the utility of HPC, I think sharing resources through cloud platforms will come naturally to them, especially the small and medium scale users of HPC. But more importantly, India could also become a key global host of cloud computing infrastructure and services due to attractive low-cost operations and highly skilled technical manpower.

HPCwire: You had a rather prominent role in the development of Cell processor-based systems and software at IBM. The Cell helped usher in the petaflop era, but overall it looks like the impact of this technology in supercomputing is going to be relatively limited. What do you think the Cell brought to the HPC space and what lessons were learned?

Nanda: The Cell based systems from IBM made two important contributions to HPC technology, besides helping cross the petaflop barrier. First they set the new trend of using hybrid multicore clusters — with CPU-GPU combinations — to build the most cost-effective, power-efficient and best-performing supercomputers. Secondly, creating a software ecosystem to harness the compute power of a revolutionary processor like Cell seemed prohibitive in the beginning. But the Cell systems effort at IBM Research showed that an effective collaboration of government, academia and industry can indeed build a respectable software ecosystem for a new architecture.

It’s true that the momentum around Cell has has been lost, but credit should go to IBM for laying the foundations of a new era that would see the proliferation of hybrid multicore CPU-GPU combination clusters in solving key HPC problems. We are already seeing glimpses of this through the momentum building around such offerings from AMD, Intel and NVIDIA.

HPCwire: In HPC, which hardware and software technologies do you see becoming increasing important over the next, say, five years?

Nanda: I believe in terms of hardware, hybrid multicore GPU-CPU combination technologies and commodity InfiniBand and Ethernet technologies will continue to lead the way and take us through the exaflop mark. In terms of software we will see more emphasis being put on tools that make it easier to write parallel applications and increase productivity.

HPCwire: Switching to your current role as the founder and CEO of HPC Links: What is the company about and what was your motivation to launch this as a business?

Nanda: While doing the systems work at IBM and at Tata over the last few years, the obvious realization came to me that now the commoditization of HPC platforms is complete. We have been building affordable parallel machines all around the world, and almost any one who needs access to a parallel machine can access one today. But are these machines utilized well enough? Not really. Are most people, or industries, who could benefit from HPC, taking advantage of these platforms today? The answer is clearly no. So what is the problem? The US government Council on Competitiveness identified two years back that there are three primary barriers to mass adoption of HPC. Namely, lack of parallel programming skills, lack of parallel applications, and high cost of adoption.

HPC Links was formed last year to help address these customer pain points. Our goal is to help businesses stay competitive by alleviating these pain points and achieving high efficiency, faster time to market and enhanced product quality through innovative use of HPC, cloud and multicore solutions. We are addressing all the three key barriers in HPC adoption through our parallel application services offerings, system integration offerings and the software tools and packages under development.

HPCwire: What is unique about the company?
 
Nanda: Our uniqueness today, if I can point to the most significant one, is our interdisciplinary skill pool. We have Ph.D.’s and Masters in multitude of scientific and engineering disciplines, all adept at various flavors of parallel programming, on all kinds of hardware and software platforms. Mix that with the breadth of domain knowledge the HPC Links team has across industry verticals, and you get a really unique, comprehensive parallel programming skill pool in the world.

HPCwire: What do you see as the principal challenges in developing parallel applications for science and technical computing codes today?

Nanda: The hard challenges in parallel application development as I see are lack of skills, and productive tools. Tackling the challenge of productive tools for parallel programming, I believe, will take longer than tackling the issue of lack of skills. There is the general lack of parallel programmers in the world today, which the universities have started to address pretty effectively. And then there is the problem that people who are good in parallel programming are not necessarily trained in various application domains, and people who are domain experts are often times not proficient in parallel programming. The key is to bring domain experts and parallel programmers together and cross train them on the job.

HPCwire: Who do think will be your main customers for these services?

Nanda: In the near term we see majority of our customers outside of India where the HPC market has higher momentum and awareness — especially in the US and Europe. The Indian HPC market is in its nascent stage, but has great potential in the longer term. Our services are targeted toward any one who can benefit from an experienced parallel programming skill pool in research and development, scaling, testing and optimization of parallel applications in a wide range of domains. For example, recently we signed up with Microsoft to provide this kind of parallel application programming services for their HPC Server platform. This makes our services available to the Windows HPC Server users and ISVs in all industry segments. We have deep Linux cluster programming expertise, and are working with universities and national labs, as well as industry HPC users.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

AWS Solution Channel

Data compression with increased performance and lower costs

Many customers associate a performance cost with data compression, but that’s not the case with Amazon FSx for Lustre. With FSx for Lustre, data compression reduces storage costs and increases aggregate file system throughput. Read more…

KAUST Leverages Mixed Precision for Geospatial Data

July 28, 2021

For many computationally intensive tasks, exacting precision is not necessary for every step of the entire task to obtain a suitably precise result. The alternative is mixed-precision computing: using high precision wher Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Leading Solution Providers

Contributors

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire