HPC Innovator’s Work Spans Two Continents

By Nicole Hemsoth

May 28, 2010

Over the past two decades, Dr. Ashwini Nanda has been at the center of some of the most cutting-edge HPC projects and initiatives in the world.  At IBM’s T.J. Watson Research Center, in New York, Dr. Nanda led the development of the Cell processor-based  systems (QS20, QS21, and QS22 blades) and software technologies for high performance computing. That work culminated in the construction of the Roadrunner supercomputer for Los Alamos National Laboratory. Later, as the head of Computational Research Laboratories (CRL) in Pune, India, he directed the development of the “Eka” HPC cluster that, in 2007, held the title of Asia’s fastest supercomputer. He also established the shared memory systems group at IBM Research, worked on the Amazon superscalar architecture at Texas Instruments, and developed parallel computers for India’s missile defense systems at Wipro, Bangalore.

Recently he moved back to India, where he founded HPC Links, a company that offers parallel programming software tools and services for the global high performance computing community. We got the opportunity to ask Dr. Nanda about how he sees the HPC industry today, how it’s changing, and what led him to start up his company.

HPCwire: Maybe we can start with some of your thoughts about the development of high performance computing in India. What are the principal challenges in building the country’s HPC capability? And how do you see the way forward for HPC and supercomputing in India — for both vendors and users?
 
Ashwini Nanda: India has less than 1 percent of the compute power in the global TOP500 supercomputing list today. This tiny share of the pie is not indicative of the financial and high-tech might of India. The gap indicates there is significant room for growth in HPC infrastructure in the country. The gap one sees today is perhaps due to the lack of broad awareness of the benefits of HPC to scientific/technical research and to business enterprises. This is despite the commendable progress made by organizations such as CDAC, CRL, SERC/IISc and HiPC in spreading HPC awareness in the country.

India’s per capita spending in high performance computing is negligible compared to the US, Japan and Germany, and for that matter compared even to China, Spain and Russia. The Unique ID (Adhaar) project of the government will likely fuel growth in HPC related to data mining, consummer security and national security. The government has procured quite a few HPC clusters for weather and climate prediction which would foster research and application development in these areas. India has very successful government enterprises in nuclear energy, space and defence, which would benefit tremendously from the use of HPC. The US counterparts in these sectors are the prime movers of the HPC industry there. The Indian government has the financial strength and must spend heavily in HPC in order to make these sectors globally competitive.
 
India has vibrant pharmaceutical, financial, entertainment and manufacturing industries, all of whom would gain significant productivity and competitiveness by using HPC. We built the Eka machine at CRL soley with private investment from Tata. The other industrial powerhouses in India have the financial means, and they will likely follow suit once they see the benefits of HPC to their business. Talking to leaders from government, academia and industry across the country, one can sense a growing awareness of the potential of HPC, which I believe will translate into a faster pace of growth in HPC infrastructure and services during the next five years or so in India. When that happens, it will benefit the multinational vendors as well as the local vendors.

HPCwire: What do you think will be the role of cloud computing for HPC users in India?

Nanda: Culturally, and economically, reuse and sharing of resources are well accepted in the Indian society. Once the users discover the utility of HPC, I think sharing resources through cloud platforms will come naturally to them, especially the small and medium scale users of HPC. But more importantly, India could also become a key global host of cloud computing infrastructure and services due to attractive low-cost operations and highly skilled technical manpower.

HPCwire: You had a rather prominent role in the development of Cell processor-based systems and software at IBM. The Cell helped usher in the petaflop era, but overall it looks like the impact of this technology in supercomputing is going to be relatively limited. What do you think the Cell brought to the HPC space and what lessons were learned?

Nanda: The Cell based systems from IBM made two important contributions to HPC technology, besides helping cross the petaflop barrier. First they set the new trend of using hybrid multicore clusters — with CPU-GPU combinations — to build the most cost-effective, power-efficient and best-performing supercomputers. Secondly, creating a software ecosystem to harness the compute power of a revolutionary processor like Cell seemed prohibitive in the beginning. But the Cell systems effort at IBM Research showed that an effective collaboration of government, academia and industry can indeed build a respectable software ecosystem for a new architecture.

It’s true that the momentum around Cell has has been lost, but credit should go to IBM for laying the foundations of a new era that would see the proliferation of hybrid multicore CPU-GPU combination clusters in solving key HPC problems. We are already seeing glimpses of this through the momentum building around such offerings from AMD, Intel and NVIDIA.

HPCwire: In HPC, which hardware and software technologies do you see becoming increasing important over the next, say, five years?

Nanda: I believe in terms of hardware, hybrid multicore GPU-CPU combination technologies and commodity InfiniBand and Ethernet technologies will continue to lead the way and take us through the exaflop mark. In terms of software we will see more emphasis being put on tools that make it easier to write parallel applications and increase productivity.

HPCwire: Switching to your current role as the founder and CEO of HPC Links: What is the company about and what was your motivation to launch this as a business?

Nanda: While doing the systems work at IBM and at Tata over the last few years, the obvious realization came to me that now the commoditization of HPC platforms is complete. We have been building affordable parallel machines all around the world, and almost any one who needs access to a parallel machine can access one today. But are these machines utilized well enough? Not really. Are most people, or industries, who could benefit from HPC, taking advantage of these platforms today? The answer is clearly no. So what is the problem? The US government Council on Competitiveness identified two years back that there are three primary barriers to mass adoption of HPC. Namely, lack of parallel programming skills, lack of parallel applications, and high cost of adoption.

HPC Links was formed last year to help address these customer pain points. Our goal is to help businesses stay competitive by alleviating these pain points and achieving high efficiency, faster time to market and enhanced product quality through innovative use of HPC, cloud and multicore solutions. We are addressing all the three key barriers in HPC adoption through our parallel application services offerings, system integration offerings and the software tools and packages under development.

HPCwire: What is unique about the company?
 
Nanda: Our uniqueness today, if I can point to the most significant one, is our interdisciplinary skill pool. We have Ph.D.’s and Masters in multitude of scientific and engineering disciplines, all adept at various flavors of parallel programming, on all kinds of hardware and software platforms. Mix that with the breadth of domain knowledge the HPC Links team has across industry verticals, and you get a really unique, comprehensive parallel programming skill pool in the world.

HPCwire: What do you see as the principal challenges in developing parallel applications for science and technical computing codes today?

Nanda: The hard challenges in parallel application development as I see are lack of skills, and productive tools. Tackling the challenge of productive tools for parallel programming, I believe, will take longer than tackling the issue of lack of skills. There is the general lack of parallel programmers in the world today, which the universities have started to address pretty effectively. And then there is the problem that people who are good in parallel programming are not necessarily trained in various application domains, and people who are domain experts are often times not proficient in parallel programming. The key is to bring domain experts and parallel programmers together and cross train them on the job.

HPCwire: Who do think will be your main customers for these services?

Nanda: In the near term we see majority of our customers outside of India where the HPC market has higher momentum and awareness — especially in the US and Europe. The Indian HPC market is in its nascent stage, but has great potential in the longer term. Our services are targeted toward any one who can benefit from an experienced parallel programming skill pool in research and development, scaling, testing and optimization of parallel applications in a wide range of domains. For example, recently we signed up with Microsoft to provide this kind of parallel application programming services for their HPC Server platform. This makes our services available to the Windows HPC Server users and ISVs in all industry segments. We have deep Linux cluster programming expertise, and are working with universities and national labs, as well as industry HPC users.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This