Intel Unveils Plans for HPC Coprocessor

By Michael Feldman

June 1, 2010

Chipmaker Intel is reviving the Larrabee technology for the HPC market, with plans to bring a manycore coprocessor to market in the next few years. During the ISC’10 opening keynote, Kirk Skaugen, vice president of Intel’s Architecture Group and general manager of the Data Center Group, announced the chipmaker is developing what they’re calling a “Many Integrated Core” (MIC) architecture, which will be the basis of a new line of processors aimed squarely at high performance technical computing applications.

The MIC architecture, like its Larrabee ancestor, will support the standard Intel Architecture (IA), the idea being to take advantage of the large software ecosystem for the x86. Coincident with the MIC chip development, Intel will be enhancing its parallel development tools and software libraries to support the new manycore coprocessor and the heterogeneous computing model.
 
Intel’s goal is for system vendors to construct Xeon-MIC servers (or workstations), similar to that of the current crop of x86-GPGPU hybrid systems. But in the case of Xeon-MIC, it’s not really a hybrid. Since both chips are based on standard x86 instructions, it’s more like a true processor-coprocessor model. And that’s what Skaugen said would differentiate the MIC accelerator from the GPGPU model of acceleration. In the later case, new programming environments like CUDA or OpenCL need to be employed to engage the GPU component.

Although the Larrabee architecture will be used as the base technology for the new coprocessor, according to Skaugen, it will also incorporate elements of Intel’s two previous experimental terascale processors: the 80-core “Polaris” chip first demonstrated in March 2007 and the 48-core “Single-chip Cloud Computer” (SCC) that introduced in December 2009. The general design of MIC will entail dozens of simple IA cores with big SIMD vector units, all linked together by an onchip interprocessor communications fabric.
MIC Coprocessor

The first product, codenamed “Knights Corner,” will be built on Intel’s 22nm process node and contain more than 50 IA cores. Intel is not specifying when that product will roll out, but Skaugen did say they are on schedule to hit the 22nm process node in 2011, so, at best, we’re at least a year away from any commercial release.

A 32-core development version of the MIC coprocessor, codenamed “Knights Ferry,” is now shipping to selected customers. A team at CERN has already migrated one of its parallel C++ codes to the coprocessor development platform in “just a few days.” Intel is promising more Knights Ferry hardware will be made available to qualified users throughout 2010.

The specs on the development platform are fairly impressive. The 32-core coprocessor runs a 1.2 GHz and supports 4 threads per core for a total of 128 threads per chip. The processor also has a large (8 MB) of shared coherent cache, and supports 1 to 2 GB of (graphics) GDDR5 memory. Although not mentioned in the announcement, it is almost certain the development platform, which is basically a Larrabee graphics system, does not support ECC memory. Since ECC is a must-have for many HPC applications (and since NVIDIA’s Fermi GPU accelerator products have already incorporated ECC), I would assume this capability will be available in the first commercial MIC products.

The development platform has the MIC coprocessor hooked up the Xeon CPU via a PCIe link, but Intel is not disclosing the coprocessor setup for the first real products. It’s not too big a stretch to think Intel will want use a standard Xeon socket for the MIC so that it can take advantage of the native QPI interconnect to link the processor and coprocessor.

At ISC, Skaugen showed a performance run on a Knights Ferry platform with LU factorization, which is used to implement Linpack. Running this code, the development chip hit 517 gigaflops, a mark Skaugen said was unmatched by any other platform. Skaugen later told me that this was single precision gigaflops, not double precision, which makes the “unmatched” claim somewhat questionable to me.

One big unknown with the MIC architecture is the vector instruction set. The original Larrabee design had its own vector instructions, so IA compatibility for that chip would only take you so far. The next-generation Sandy Bridge Xeons will incorporate the new AVX instructions, which are said to double the FLOPS/clock performance. It’s not clear if MIC will eventually support AVX as well, but Skaugen did say that they are “converging” their floating point instructions toward a common set that will be used in all IA platforms.

The chipmaker’s motivation to make MIC a commercial reality is compelling. According to Intel, about 25 percent of its server chips end up in HPC systems. If they can augment those sales with high value (although not overly expensive) coprocessors, that would be a nice new revenue source for the company. The trick, of course, is for Intel to sell enough of them so as to be able to recoup the hundreds of millions of dollars in chip and software development costs.

The other aspect to this is that most people now realize that standard x86 CPUs are not going to be able to scale efficiently to millions and billions of threads — the level needed for exascale HPC. This has made the idea of simpler manycore chips with big vector units very appealing.

Unfortunately for Intel, it’s a little late to the game, having watched the first wave of GPU acceleration from the sidelines. So once again, the company will have to hit a moving target. But if Intel can produce a true x86 coprocessor with terascale performance in a couple of years, and the software stack to back it up, it will be a very interesting solution for the HPC market.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This