Intel Unveils Plans for HPC Coprocessor

By Michael Feldman

June 1, 2010

Chipmaker Intel is reviving the Larrabee technology for the HPC market, with plans to bring a manycore coprocessor to market in the next few years. During the ISC’10 opening keynote, Kirk Skaugen, vice president of Intel’s Architecture Group and general manager of the Data Center Group, announced the chipmaker is developing what they’re calling a “Many Integrated Core” (MIC) architecture, which will be the basis of a new line of processors aimed squarely at high performance technical computing applications.

The MIC architecture, like its Larrabee ancestor, will support the standard Intel Architecture (IA), the idea being to take advantage of the large software ecosystem for the x86. Coincident with the MIC chip development, Intel will be enhancing its parallel development tools and software libraries to support the new manycore coprocessor and the heterogeneous computing model.
 
Intel’s goal is for system vendors to construct Xeon-MIC servers (or workstations), similar to that of the current crop of x86-GPGPU hybrid systems. But in the case of Xeon-MIC, it’s not really a hybrid. Since both chips are based on standard x86 instructions, it’s more like a true processor-coprocessor model. And that’s what Skaugen said would differentiate the MIC accelerator from the GPGPU model of acceleration. In the later case, new programming environments like CUDA or OpenCL need to be employed to engage the GPU component.

Although the Larrabee architecture will be used as the base technology for the new coprocessor, according to Skaugen, it will also incorporate elements of Intel’s two previous experimental terascale processors: the 80-core “Polaris” chip first demonstrated in March 2007 and the 48-core “Single-chip Cloud Computer” (SCC) that introduced in December 2009. The general design of MIC will entail dozens of simple IA cores with big SIMD vector units, all linked together by an onchip interprocessor communications fabric.
MIC Coprocessor

The first product, codenamed “Knights Corner,” will be built on Intel’s 22nm process node and contain more than 50 IA cores. Intel is not specifying when that product will roll out, but Skaugen did say they are on schedule to hit the 22nm process node in 2011, so, at best, we’re at least a year away from any commercial release.

A 32-core development version of the MIC coprocessor, codenamed “Knights Ferry,” is now shipping to selected customers. A team at CERN has already migrated one of its parallel C++ codes to the coprocessor development platform in “just a few days.” Intel is promising more Knights Ferry hardware will be made available to qualified users throughout 2010.

The specs on the development platform are fairly impressive. The 32-core coprocessor runs a 1.2 GHz and supports 4 threads per core for a total of 128 threads per chip. The processor also has a large (8 MB) of shared coherent cache, and supports 1 to 2 GB of (graphics) GDDR5 memory. Although not mentioned in the announcement, it is almost certain the development platform, which is basically a Larrabee graphics system, does not support ECC memory. Since ECC is a must-have for many HPC applications (and since NVIDIA’s Fermi GPU accelerator products have already incorporated ECC), I would assume this capability will be available in the first commercial MIC products.

The development platform has the MIC coprocessor hooked up the Xeon CPU via a PCIe link, but Intel is not disclosing the coprocessor setup for the first real products. It’s not too big a stretch to think Intel will want use a standard Xeon socket for the MIC so that it can take advantage of the native QPI interconnect to link the processor and coprocessor.

At ISC, Skaugen showed a performance run on a Knights Ferry platform with LU factorization, which is used to implement Linpack. Running this code, the development chip hit 517 gigaflops, a mark Skaugen said was unmatched by any other platform. Skaugen later told me that this was single precision gigaflops, not double precision, which makes the “unmatched” claim somewhat questionable to me.

One big unknown with the MIC architecture is the vector instruction set. The original Larrabee design had its own vector instructions, so IA compatibility for that chip would only take you so far. The next-generation Sandy Bridge Xeons will incorporate the new AVX instructions, which are said to double the FLOPS/clock performance. It’s not clear if MIC will eventually support AVX as well, but Skaugen did say that they are “converging” their floating point instructions toward a common set that will be used in all IA platforms.

The chipmaker’s motivation to make MIC a commercial reality is compelling. According to Intel, about 25 percent of its server chips end up in HPC systems. If they can augment those sales with high value (although not overly expensive) coprocessors, that would be a nice new revenue source for the company. The trick, of course, is for Intel to sell enough of them so as to be able to recoup the hundreds of millions of dollars in chip and software development costs.

The other aspect to this is that most people now realize that standard x86 CPUs are not going to be able to scale efficiently to millions and billions of threads — the level needed for exascale HPC. This has made the idea of simpler manycore chips with big vector units very appealing.

Unfortunately for Intel, it’s a little late to the game, having watched the first wave of GPU acceleration from the sidelines. So once again, the company will have to hit a moving target. But if Intel can produce a true x86 coprocessor with terascale performance in a couple of years, and the software stack to back it up, it will be a very interesting solution for the HPC market.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire