Intel Unveils Plans for HPC Coprocessor

By Michael Feldman

June 1, 2010

Chipmaker Intel is reviving the Larrabee technology for the HPC market, with plans to bring a manycore coprocessor to market in the next few years. During the ISC’10 opening keynote, Kirk Skaugen, vice president of Intel’s Architecture Group and general manager of the Data Center Group, announced the chipmaker is developing what they’re calling a “Many Integrated Core” (MIC) architecture, which will be the basis of a new line of processors aimed squarely at high performance technical computing applications.

The MIC architecture, like its Larrabee ancestor, will support the standard Intel Architecture (IA), the idea being to take advantage of the large software ecosystem for the x86. Coincident with the MIC chip development, Intel will be enhancing its parallel development tools and software libraries to support the new manycore coprocessor and the heterogeneous computing model.
 
Intel’s goal is for system vendors to construct Xeon-MIC servers (or workstations), similar to that of the current crop of x86-GPGPU hybrid systems. But in the case of Xeon-MIC, it’s not really a hybrid. Since both chips are based on standard x86 instructions, it’s more like a true processor-coprocessor model. And that’s what Skaugen said would differentiate the MIC accelerator from the GPGPU model of acceleration. In the later case, new programming environments like CUDA or OpenCL need to be employed to engage the GPU component.

Although the Larrabee architecture will be used as the base technology for the new coprocessor, according to Skaugen, it will also incorporate elements of Intel’s two previous experimental terascale processors: the 80-core “Polaris” chip first demonstrated in March 2007 and the 48-core “Single-chip Cloud Computer” (SCC) that introduced in December 2009. The general design of MIC will entail dozens of simple IA cores with big SIMD vector units, all linked together by an onchip interprocessor communications fabric.
MIC Coprocessor

The first product, codenamed “Knights Corner,” will be built on Intel’s 22nm process node and contain more than 50 IA cores. Intel is not specifying when that product will roll out, but Skaugen did say they are on schedule to hit the 22nm process node in 2011, so, at best, we’re at least a year away from any commercial release.

A 32-core development version of the MIC coprocessor, codenamed “Knights Ferry,” is now shipping to selected customers. A team at CERN has already migrated one of its parallel C++ codes to the coprocessor development platform in “just a few days.” Intel is promising more Knights Ferry hardware will be made available to qualified users throughout 2010.

The specs on the development platform are fairly impressive. The 32-core coprocessor runs a 1.2 GHz and supports 4 threads per core for a total of 128 threads per chip. The processor also has a large (8 MB) of shared coherent cache, and supports 1 to 2 GB of (graphics) GDDR5 memory. Although not mentioned in the announcement, it is almost certain the development platform, which is basically a Larrabee graphics system, does not support ECC memory. Since ECC is a must-have for many HPC applications (and since NVIDIA’s Fermi GPU accelerator products have already incorporated ECC), I would assume this capability will be available in the first commercial MIC products.

The development platform has the MIC coprocessor hooked up the Xeon CPU via a PCIe link, but Intel is not disclosing the coprocessor setup for the first real products. It’s not too big a stretch to think Intel will want use a standard Xeon socket for the MIC so that it can take advantage of the native QPI interconnect to link the processor and coprocessor.

At ISC, Skaugen showed a performance run on a Knights Ferry platform with LU factorization, which is used to implement Linpack. Running this code, the development chip hit 517 gigaflops, a mark Skaugen said was unmatched by any other platform. Skaugen later told me that this was single precision gigaflops, not double precision, which makes the “unmatched” claim somewhat questionable to me.

One big unknown with the MIC architecture is the vector instruction set. The original Larrabee design had its own vector instructions, so IA compatibility for that chip would only take you so far. The next-generation Sandy Bridge Xeons will incorporate the new AVX instructions, which are said to double the FLOPS/clock performance. It’s not clear if MIC will eventually support AVX as well, but Skaugen did say that they are “converging” their floating point instructions toward a common set that will be used in all IA platforms.

The chipmaker’s motivation to make MIC a commercial reality is compelling. According to Intel, about 25 percent of its server chips end up in HPC systems. If they can augment those sales with high value (although not overly expensive) coprocessors, that would be a nice new revenue source for the company. The trick, of course, is for Intel to sell enough of them so as to be able to recoup the hundreds of millions of dollars in chip and software development costs.

The other aspect to this is that most people now realize that standard x86 CPUs are not going to be able to scale efficiently to millions and billions of threads — the level needed for exascale HPC. This has made the idea of simpler manycore chips with big vector units very appealing.

Unfortunately for Intel, it’s a little late to the game, having watched the first wave of GPU acceleration from the sidelines. So once again, the company will have to hit a moving target. But if Intel can produce a true x86 coprocessor with terascale performance in a couple of years, and the software stack to back it up, it will be a very interesting solution for the HPC market.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

University of Chicago Researchers Generate First Computational Model of Entire SARS-CoV-2 Virus

January 15, 2021

Over the course of the last year, many detailed computational models of SARS-CoV-2 have been produced with the help of supercomputers, but those models have largely focused on critical elements of the virus, such as its Read more…

By Oliver Peckham

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Roar Supercomputer to Support Naval Aircraft Research

January 14, 2021

One might not think “aircraft” when picturing the U.S. Navy, but the military branch actually has thousands of aircraft currently in service – and now, supercomputing will help future naval aircraft operate faster, Read more…

By Staff report

DOE and NOAA Extend Computing Partnership, Plan for New Supercomputer

January 14, 2021

The National Climate-Computing Research Center (NCRC), hosted by Oak Ridge National Laboratory (ORNL), has been supporting the climate research of the National Oceanic and Atmospheric Administration (NOAA) for the last 1 Read more…

By Oliver Peckham

Using Micro-Combs, Researchers Demonstrate World’s Fastest Optical Neuromorphic Processor for AI

January 13, 2021

Neuromorphic computing, which uses chips that mimic the behavior of the human brain using virtual “neurons,” is growing in popularity thanks to high-profile efforts from Intel and others. Now, a team of researchers l Read more…

By Oliver Peckham

AWS Solution Channel

Now Available – Amazon EC2 C6gn Instances with 100 Gbps Networking

Amazon EC2 C6gn instances powered by AWS Graviton2 processors are now available!

Compared to C6g instances, this new instance type provides 4x higher network bandwidth, 4x higher packet processing performance, and 2x higher EBS bandwidth. Read more…

Intel® HPC + AI Pavilion

Intel Keynote Address

Intel is the foundation of HPC – from the workstation to the cloud to the backbone of the Top500. At SC20, Intel’s Trish Damkroger, VP and GM of high performance computing, addresses the audience to show how Intel and its partners are building the future of HPC today, through hardware and software technologies that accelerate the broad deployment of advanced HPC systems. Read more…

Honing In on AI, US Launches National Artificial Intelligence Initiative Office

January 13, 2021

To drive American leadership in the field of AI into the future, the National Artificial Intelligence Initiative Office has been launched by the White House Office of Science and Technology Policy (OSTP). The new agen Read more…

By Todd R. Weiss

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Intel ‘Ice Lake’ Server Chips in Production, Set for Volume Ramp This Quarter

January 12, 2021

Intel Corp. used this week’s virtual CES 2021 event to reassert its dominance of the datacenter with the formal roll out of its next-generation server chip, the 10nm Xeon Scalable processor that targets AI and HPC workloads. The third-generation “Ice Lake” family... Read more…

By George Leopold

Researchers Say It Won’t Be Possible to Control Superintelligent AI

January 11, 2021

Worries about out-of-control AI aren’t new. Many prominent figures have suggested caution when unleashing AI. One quote that keeps cropping up is (roughly) th Read more…

By John Russell

AMD Files Patent on New GPU Chiplet Approach

January 5, 2021

Advanced Micro Devices is accelerating the GPU chiplet race with the release of a U.S. patent application for a device that incorporates high-bandwidth intercon Read more…

By George Leopold

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Intel Touts Optane Performance, Teases Next-gen “Crow Pass”

January 5, 2021

Competition to leverage new memory and storage hardware with new or improved software to create better storage/memory schemes has steadily gathered steam during Read more…

By John Russell

Farewell 2020: Bleak, Yes. But a Lot of Good Happened Too

December 30, 2020

Here on the cusp of the new year, the catchphrase ‘2020 hindsight’ has a distinctly different feel. Good riddance, yes. But also proof of science’s power Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Leading Solution Providers

Contributors

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This