Sometimes Accomplishment Is Starting Something New Rather than Finishing Something Old

By Thomas Sterling and Chirag Dekate

June 2, 2010

So perhaps it was of this last year of the first decade of the first century of the new millennium in the field of high performance computing. Not to minimize the continued progression of petaflops computing as we enter Year 3 AP (After Petaflops).  With the addition of new machines both deployed and planned, petaflops-scale applications, as acknowledged by the Gordon Bell Prize, steady increase in the number of cores per socket, and the uncomfortable marriage of GPUs in heterogeneous structures — the last year has been marked by continued and demonstrable advances. As petaflops computing has become truly international in scope and application, this emerging system class is no longer an ethereal fringe, but rather has gained firm traction at such power houses (yes, meant in more than one way) as Oak Ridge National Laboratory, where they now serve humanity as the heavy lifters in computational methods addressing the challenges of the modern world.

But one potentially important accomplishment in the last twelve months is not something that has been completed; instead, it is something that has been just initiated. Even as we gain a footing in the era of petaflops computing, we have set in motion the exploration of the undiscovered domain of exaflops computing. This year has seen the launching of multiple programs to develop the concepts, architectures, software stack, programming models, and new families of parallel algorithms necessary to enable the practical realization of exaflops capability prior to the end of this decade. These have involved unprecedented cooperation and coordination within government agencies and laboratories, industry, academia, and internationally. At the dawn of the petaflops era, the emerging focus on the performance regime three orders of magnitude beyond is unlike anything before it and in stark contrast to the grass-roots workshops towards petaflops back in the relaxed days of the run-up to teraflops in the 1990s.

There are good reasons for this. The challenges facing the continued delivered sustained performance across a broad range of application domains are dramatic and reflect a corner turning on the trends that have driven us forward, ultimately due to Moore’s Law and the semiconductor revolution. These, somewhat over simplistically, can be summarized as: concurrency, power, reliability, and productivity.

In the past, the double-whammy of increases in clock rate and increases in processor core complexity delivered two decades of sustained exponential growth in processor core performance which when integrated in clusters of SMP nodes has given us the iconic images of straight lines on semi-log graphs with respect to the passage of time. Now the S-curve is bending for a second time, and not in a good way. Power has hit the threshold of pain, and the architecture tricks have been largely exhausted. Increased resources have been dedicated to confronting the egregious impact of the memory wall and the latencies and blocking incurred. Ever decreasing efficiencies (single digit not uncommon) by several normalization factors (e.g., FLOPS, utilization, per transistor, per joule, per hectare) have exposed the soft underbelly of an ultimately unsustainable golden age: exponentials cannot go on forever.

Indeed, the authors have projected that “we will never achieve sustained zettaflops computing” using the hardware paradigm of Boolean logic gates and binary data storage. Due to the speed of light, Boltzmann’s Constant, and atomic granularity it is predicted that the wall, which is more like a very steep hill will occur at about 32 exaflops. But we are not there yet; indeed, there are a good four orders of magnitude to go. And that will be hard.

Three major activities can be cited that have just been created during the last year to engage the talents of the international community including experts in: hardware, software, algorithms, and domain science. These have resulted from at least two years of preliminary workshops and studies sponsored by diverse entities and internal industry planning as well. These are: IESP, DOE X-Stack, and DARPA UHPC. There are many smaller activities as well.

The International Exascale Software Project (IESP) has brought together the interests, talents, and resources of the international community to cooperate and coordinate long-term development of the necessary software infrastructure required to enable effective exaflops-scale performance before the end of this decade. Learning from past experiences where software always appeared to lag behind the hardware, this world-straddling endeavor is driven by the recognition that to succeed, the software needs to be there when the hardware is. More importantly, the hardware designs must be informed by the needs of the software so that there is minimum mismatch and the concomitant ensuing generations of unsatisfactory patches. But there is an even more critical imperative: the realization that without the right software, exaflops may not be achievable at all (except in special cases) and that no one nation can go it alone; the HPC community is just too small for multiple conflicting paths of a top to bottom software refactoring. In the last year, four multi-day meetings in France, Japan, and the UK among representatives of all of the major HPC nations have provided an emerging roadmap to inform future planning of the joint development of the full supporting software infrastructure for Exascale systems’ operation and programming.

The US DOE has also begun a new program of research with the release of its recent RFP to develop the components of the “X-Stack,” the software required to enable a new generation of science and technology applications with the advent of future exaflops capable systems. These elements include operating systems, runtime systems, programming models and tools, and methods for reliability and mass storage and I/O. The winners, not yet announced, will represent a new wave of research in the US combining partners in the national laboratories, industry, and academia driven by the requirements of major mission-critical applications. This and other related DOE programs were developed in part from an extensive series of community workshops through the preceding year on application domains, hardware and software systems, and mathematical algorithms. This research will join other programs around the world in the first concerted effort to turn the corner and set a new trajectory for future HPC system software architecture, design, and implementation.

Perhaps most dramatic and at the same time risky undertaking is the new DARPA Ubiquitous High Performance Computing (UHPC) research program. UHPC is intended to attack the above challenges through nothing less than revolutionizing HPC system design. Through a lengthy program development process that involved three separate studies in technology, software, and resiliency engaging the talents of experts throughout the US, UHPC evolved an energetic research charter to reinvent computing prior to the end of this decade. The program was not explicitly targeted to exascale but rather to the mid-range of one or some unspecified number of interconnected and interoperable racks, each capable of approximately 1 petaflops sustained performance with a power budget of less than 60 kilowatts.

At the foundation of this program is the call for a new model of parallel computation to replace the venerable and highly successful message-passing model that has dominated for the last two decades. A major emphasis is on power reduction with an average energy of 25 Pico-Joules per floating point operation. A thousand such racks if sufficiently efficient would deliver 1 exaflops for 20 megawatts.

Emphasis is placed on the co-design of both hardware and software components in response to challenge problems that will span the applications domains from some of the largest STEM problems to heavy real time I/O streaming to knowledge management graph problems. Scaling down is as important as scaling up to UHPC, with single modules capable of multiple teraflops (and in mobile modules this is an important operating point).

The program may run eight or nine years and result in one or more prototypes of fully-operational systems. The first half of the program, Phases 1 and 2 spanning four years, will begin this summer with the winning teams to be announced in a month’s time. Atypical of such programs is the expectation of strong cooperation among competing teams and the delivery of much of the techniques and technology to the research community throughout the four phases of the program.

This year has indeed been a very productive year, both for its accomplishments in the deployment and application of petaflops-scale systems and for its forward-looking inauguration of the exaflops era.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This