Sometimes Accomplishment Is Starting Something New Rather than Finishing Something Old

By Thomas Sterling and Chirag Dekate

June 2, 2010

So perhaps it was of this last year of the first decade of the first century of the new millennium in the field of high performance computing. Not to minimize the continued progression of petaflops computing as we enter Year 3 AP (After Petaflops).  With the addition of new machines both deployed and planned, petaflops-scale applications, as acknowledged by the Gordon Bell Prize, steady increase in the number of cores per socket, and the uncomfortable marriage of GPUs in heterogeneous structures — the last year has been marked by continued and demonstrable advances. As petaflops computing has become truly international in scope and application, this emerging system class is no longer an ethereal fringe, but rather has gained firm traction at such power houses (yes, meant in more than one way) as Oak Ridge National Laboratory, where they now serve humanity as the heavy lifters in computational methods addressing the challenges of the modern world.

But one potentially important accomplishment in the last twelve months is not something that has been completed; instead, it is something that has been just initiated. Even as we gain a footing in the era of petaflops computing, we have set in motion the exploration of the undiscovered domain of exaflops computing. This year has seen the launching of multiple programs to develop the concepts, architectures, software stack, programming models, and new families of parallel algorithms necessary to enable the practical realization of exaflops capability prior to the end of this decade. These have involved unprecedented cooperation and coordination within government agencies and laboratories, industry, academia, and internationally. At the dawn of the petaflops era, the emerging focus on the performance regime three orders of magnitude beyond is unlike anything before it and in stark contrast to the grass-roots workshops towards petaflops back in the relaxed days of the run-up to teraflops in the 1990s.

There are good reasons for this. The challenges facing the continued delivered sustained performance across a broad range of application domains are dramatic and reflect a corner turning on the trends that have driven us forward, ultimately due to Moore’s Law and the semiconductor revolution. These, somewhat over simplistically, can be summarized as: concurrency, power, reliability, and productivity.

In the past, the double-whammy of increases in clock rate and increases in processor core complexity delivered two decades of sustained exponential growth in processor core performance which when integrated in clusters of SMP nodes has given us the iconic images of straight lines on semi-log graphs with respect to the passage of time. Now the S-curve is bending for a second time, and not in a good way. Power has hit the threshold of pain, and the architecture tricks have been largely exhausted. Increased resources have been dedicated to confronting the egregious impact of the memory wall and the latencies and blocking incurred. Ever decreasing efficiencies (single digit not uncommon) by several normalization factors (e.g., FLOPS, utilization, per transistor, per joule, per hectare) have exposed the soft underbelly of an ultimately unsustainable golden age: exponentials cannot go on forever.

Indeed, the authors have projected that “we will never achieve sustained zettaflops computing” using the hardware paradigm of Boolean logic gates and binary data storage. Due to the speed of light, Boltzmann’s Constant, and atomic granularity it is predicted that the wall, which is more like a very steep hill will occur at about 32 exaflops. But we are not there yet; indeed, there are a good four orders of magnitude to go. And that will be hard.

Three major activities can be cited that have just been created during the last year to engage the talents of the international community including experts in: hardware, software, algorithms, and domain science. These have resulted from at least two years of preliminary workshops and studies sponsored by diverse entities and internal industry planning as well. These are: IESP, DOE X-Stack, and DARPA UHPC. There are many smaller activities as well.

The International Exascale Software Project (IESP) has brought together the interests, talents, and resources of the international community to cooperate and coordinate long-term development of the necessary software infrastructure required to enable effective exaflops-scale performance before the end of this decade. Learning from past experiences where software always appeared to lag behind the hardware, this world-straddling endeavor is driven by the recognition that to succeed, the software needs to be there when the hardware is. More importantly, the hardware designs must be informed by the needs of the software so that there is minimum mismatch and the concomitant ensuing generations of unsatisfactory patches. But there is an even more critical imperative: the realization that without the right software, exaflops may not be achievable at all (except in special cases) and that no one nation can go it alone; the HPC community is just too small for multiple conflicting paths of a top to bottom software refactoring. In the last year, four multi-day meetings in France, Japan, and the UK among representatives of all of the major HPC nations have provided an emerging roadmap to inform future planning of the joint development of the full supporting software infrastructure for Exascale systems’ operation and programming.

The US DOE has also begun a new program of research with the release of its recent RFP to develop the components of the “X-Stack,” the software required to enable a new generation of science and technology applications with the advent of future exaflops capable systems. These elements include operating systems, runtime systems, programming models and tools, and methods for reliability and mass storage and I/O. The winners, not yet announced, will represent a new wave of research in the US combining partners in the national laboratories, industry, and academia driven by the requirements of major mission-critical applications. This and other related DOE programs were developed in part from an extensive series of community workshops through the preceding year on application domains, hardware and software systems, and mathematical algorithms. This research will join other programs around the world in the first concerted effort to turn the corner and set a new trajectory for future HPC system software architecture, design, and implementation.

Perhaps most dramatic and at the same time risky undertaking is the new DARPA Ubiquitous High Performance Computing (UHPC) research program. UHPC is intended to attack the above challenges through nothing less than revolutionizing HPC system design. Through a lengthy program development process that involved three separate studies in technology, software, and resiliency engaging the talents of experts throughout the US, UHPC evolved an energetic research charter to reinvent computing prior to the end of this decade. The program was not explicitly targeted to exascale but rather to the mid-range of one or some unspecified number of interconnected and interoperable racks, each capable of approximately 1 petaflops sustained performance with a power budget of less than 60 kilowatts.

At the foundation of this program is the call for a new model of parallel computation to replace the venerable and highly successful message-passing model that has dominated for the last two decades. A major emphasis is on power reduction with an average energy of 25 Pico-Joules per floating point operation. A thousand such racks if sufficiently efficient would deliver 1 exaflops for 20 megawatts.

Emphasis is placed on the co-design of both hardware and software components in response to challenge problems that will span the applications domains from some of the largest STEM problems to heavy real time I/O streaming to knowledge management graph problems. Scaling down is as important as scaling up to UHPC, with single modules capable of multiple teraflops (and in mobile modules this is an important operating point).

The program may run eight or nine years and result in one or more prototypes of fully-operational systems. The first half of the program, Phases 1 and 2 spanning four years, will begin this summer with the winning teams to be announced in a month’s time. Atypical of such programs is the expectation of strong cooperation among competing teams and the delivery of much of the techniques and technology to the research community throughout the four phases of the program.

This year has indeed been a very productive year, both for its accomplishments in the deployment and application of petaflops-scale systems and for its forward-looking inauguration of the exaflops era.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Virga: Australia’s New HPC and AI Powerhouse

July 11, 2024

Australia has officially added another supercomputer to the TOP500 list with the implementation of Virga. Officially coming online in June 2024, Virga is the newest HPC system to come out of the Australian Commonwealth S Read more…

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and implementation phases of the Quantum Quantum Science and Technolo Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the software, and selecting the best user interface. The National Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three of the 10 highest-ranking Top500 systems, but some other ne Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Leading Solution Providers

Contributors

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire