Scaling the Exa

By Nicole Hemsoth

June 3, 2010

The petascale era of supercomputing is barely underway, but the effort to reach the exascale level has already begun. In fact, it began three years ago as part of an international effort to develop a software infrastructure for exaflop supercomputers.

The International Exascale Software Project (IESP) was formed with the realization that current software used for terascale and now petascale computing is inadequate for exascale computing. The IESP brings together government agencies, vendors and other stakeholders in the HPC community, with the goal of designing and building a system software stack to support this future level of computing. That will entail managing parallelism an order of magnitude higher than the current top systems in the field today.

The University of Tennessee’s Jack Dongarra has been involved with the IESP since its conception back in 2007. At ISC’10 he chaired a session that outlined its goals and gave a status report on the project’s progress. We got a chance to speak with him before the conference to discuss exascale software, the project, and the importance of developing this software for the global HPC community.

HPCwire: We had to go through a transition like this before. What happened to software in the transition from terascale to petascale?

Jack Dongarra: Today we have very little software that runs at the petascale level. We have software approaching terascale software, in that it routinely performs at the teraflop levels on our largest machines. Only through extreme efforts do we get to claim petaflop levels for our applications. It really requires a rethinking.

When we made the transition from vector machines to parallel systems, that was a big deal. We’re encountering the same kinds of transition today in terms of rewriting our software, just in terms of the things that I deal with, which is writing numerical libraries. We’re rewriting everything to address issues of multicore.

Multicore presents many challenges in terms of performance that were not present with parallel computing. I know that seems a little strange, but it’s because of the fact that with multicore, things happen much faster. So the bandwidth has increased, latency has gotten better. So you can’t hesitate in what you’re doing. You’ll lose too much performance.

The model that we had for parallel processing was a fork-join sort of model — what I’ll call a bulk synchronous form. It was a loop then you did a bunch of things in parallel then you joined together at the end of that loop. You can’t do that with multicore. You need to do more asynchronous processing.

So you need to develop algorithms that really present a form of execution that is asynchronous and breaks that model of loop-level parallelism, because waiting for the tasks to finish is just too inefficient on these systems. It requires a rethinking of our algorithms and a rewriting of our software. So it’s that kind of thing that we have to go through again as we go to exascale.

HPCwire: Is this transition going to be different?

Dongarra: I think it is different, and it’s different for a few reasons. One is that we learned some lessons from the previous transitions that took place, and we don’t want to repeat that experience. The second reason is that there’s a general recognition that this change is going to more dramatic than it was in the previous transition. Going from thousands to hundreds of thousands of threads of execution, which is what we did before, is going to be different than going from hundreds of thousand to perhaps billions of threads. That change is going to have an enormous impact. And tied together with some of the architectural features that are being proposed today for exascale systems, is going to lead to a lot of tension, right at the software point.

Because of the steepness of the ascent from petascale to exascale, we should start this process as soon as possible. The extreme parallelism, the hybrid design, and because the tightening of the memory bandwidth bottleneck is going to become more extreme as we move to the future, we have to start addressing these issues now.

Also, the relative amount of memory that we have on exascale systems — that balance between FLOPS and bytes — is going to be changing. In the old, old days we thought: one byte per FLOP. When you look at petascale machines, that ratio has changed quite a bit, and when you look toward exascale, it’s going to change again in an even more dramatic way. That will cause some issues with the ability of our algorithms to scale as you grow the problem size.

The other issue deals with fault tolerance. When you have billions of parallel things, we’re going to have failure. So it’s going to become more of a normal part of computing that we’re going to be dropping or losing part of the computation. We have to be prepared to adjust to that somehow. In the past, we didn’t have to worry so much about that, and when we did, we performed a checkpoint and a restart. Well, for exascale, you can’t do a checkpoint. There’s just too much memory in the system, so it would take too long.

The software infrastructure can’t deal with that today, so it’s a call to action to deal with these hardware changes. If we don’t do anything, the software ecosystem would remain stagnant. So we have to look at different approaches and perhaps be more involved in the design of architecture, in the sense there will be a co-design with algorithms and applications people, and helping to design machines that make sense.

HPCwire: Do you think there’s general agreement about what the hardware will look like?

Dongarra: There are a number of constraints of the architecture for exascale. One constraint is cost. Everybody says a machine can cost no more than $200 million. You’re going to spend half your money on memory, so you have take that into consideration.

There are also other constraints that come into play. For example, the machine can consume no more than 20 MW. That’s thought to be the upper limit for a reasonable machine from the standpoint of power, cooling, etc. The machine we have here at Oak Ridge — the Jaguar supercomputer — is about 7 megawatts.

And then there’s the question of what kind of processors are we going to have. The thinking today is that there’s going to be two paths — what some people call them swim lanes — to exascale hardware.

One is going to be lightweight processors. By lightweight, we mean things like the Blue Gene [PowerPC] processor. One general way to characterize this architecture is 1GHz in processor speed, one thousand cores per node, and one million nodes per system. A second path to exascale is commodity processors together with accelerators, such as GPUs. The software would support both those models, although there would be differences we’d have to deal with.

Both of the models generate 10^18 FLOPS and both have on the order of a billion threads of execution. We realize that represents a lot of parallel processing and we need to support that in some manner. That’s today’s view of the hardware, although clearly, that could change.

HPCwire: So how would you engage vendors to build these exascale machines. What’s the business case?

Dongarra: Well, the business case may mean that the government, or governments, would have to provide incentives to the manufacturers, that is, to put up money so that they develop architectures in this direction. We can’t expect the vendors to drop the commodity side of their business to address this very small niche activity unless there’s an incentive to do so. I think the government is prepared to provide those incentives, and to work with the applications people to change that current model that we have, where things are just thrown over the fence.

The other thing that we realize is that we do have a very good mechanism for coordinating research at a global level. There’s some level of coordination done between the DOE and NSF, but there’s really no coordination across country boundaries. We’re looking at the EC, and the activities they have, the Japanese, perhaps the Chinese and Koreans, and so on, and trying to understand how to attack the software issues, by looking at dividing the work.

That requires a higher level of coordination at the government funding level to be able to target research in certain areas so we don’t duplicate efforts too much. And then we can also work together on things we have a mutual interest in.

The G8 countries recently put out a call for exascale software for applications. Seven of the G8 countries — the US, Canada, the UK, France, Germany, Japan, and Russia — have gotten together and put money on the table — 10 million Euros — to fund research and evaluate collaborative proposals on exascale software. They’re going to evaluate the proposals that were submitted and ask a certain number of the them to refine their ideas and submit full proposals. Part of ground rules for this is that you had to have a minimum of three countries involved in the proposal. This G8 initiative used the IESP as a model for describing what they wanted.

HPCwire: In a broad sense, what is the goal of the IESP?

Dongarra: The goal of the IESP is to come up with an international plan for developing the next generation of open source software for high performance scientific computing. So our goal is to develop a roadmap, and that roadmap would lay out issues, priorities, and describe the software stack that’s necessary for exascale.

This software stack has things from the system side, like operating systems, I/O, the external environment and system management. It also deals with the development environment, which looks at programming models, frameworks for developing applications, compilers, numerical libraries and debugging tools. There’s another element that tries to integrate applications and use them as a vehicle for testing the ideas.

And finally there’s an avenue that I’ll call cross-cutting issues — issues that really impact all of the software that we’re talking about. That has to do with resilience, power management, performance optimization, and overall programmability.

Today we don’t really have this global evaluation of missing components within the stack itself. We want to make sure that we understand what the needs are and that the research would cover those needs. So we’re trying to define and develop the priorities to help with this planning process.

Ultimately we feel the scale of investments is such that we really need an international input on the requirements, so we want to work together with Americans, Europeans, and Asians and really develop this larger vision for high performance computing — something that hasn’t been done in the past.

All of this sits on top of a recognition that these things are driven by the applications. We’re not just developing software in isolation. The applications people feel it’s critical to have exascale computing to further their area of research. The US DOE and NSF have been very strong in terms of developing those science drivers — areas like climate, nuclear energy, combustion, advanced materials, C02 sequestration, and basic science. These all play a part in the needs for exascale. So we’re working with the applications people in getting to that level.

HPCwire: The stack you’re describing, from the OS on down, sounds like a rather substantial body of software. How would it be maintained?

Dongarra: Once it gets developed, a mechanism has to be put in place for the care of the software. There’s a path to exascale. Going from petaflops to 10 petaflops to 100 petaflops, and finally to exascale, are going to require changes along the way. It will require a redeployment in certain areas and a strategy for phasing in the software and the research to necessary to develop it.

And there has to be the ultimate repositing of the information and keeping it in a state where it can, in fact, be used. So yes, that becomes an important aspect of the exascale software initiative.

HPCwire: An example of this approach that comes to mind is the MPI effort, which came out of the HPC research community, and was subsequently supported by vendors. Do you see that as a model for what’s being done here, but at a much broader scale?

Dongarra: Absolutely. We have a community that develops software and vendors picking it up, perhaps refining it, and adding value to the software for their own hardware platforms. MPI is a good example, where we have a standard, which is not software, but a description of what the software should do. And then we have activities that provide a working version of that standard. MPICH is a good example of that; Open MPI is another.

Open MPI is more of a community-involved effort that has input from a larger group to develop an open source implementation. Open source is one of the major goals of the exascale software initiative, although we don’t specify the exact licensing structure within that context. That’s something we’ll have to face at some point.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This