Scaling the Exa

By Nicole Hemsoth

June 3, 2010

The petascale era of supercomputing is barely underway, but the effort to reach the exascale level has already begun. In fact, it began three years ago as part of an international effort to develop a software infrastructure for exaflop supercomputers.

The International Exascale Software Project (IESP) was formed with the realization that current software used for terascale and now petascale computing is inadequate for exascale computing. The IESP brings together government agencies, vendors and other stakeholders in the HPC community, with the goal of designing and building a system software stack to support this future level of computing. That will entail managing parallelism an order of magnitude higher than the current top systems in the field today.

The University of Tennessee’s Jack Dongarra has been involved with the IESP since its conception back in 2007. At ISC’10 he chaired a session that outlined its goals and gave a status report on the project’s progress. We got a chance to speak with him before the conference to discuss exascale software, the project, and the importance of developing this software for the global HPC community.

HPCwire: We had to go through a transition like this before. What happened to software in the transition from terascale to petascale?

Jack Dongarra: Today we have very little software that runs at the petascale level. We have software approaching terascale software, in that it routinely performs at the teraflop levels on our largest machines. Only through extreme efforts do we get to claim petaflop levels for our applications. It really requires a rethinking.

When we made the transition from vector machines to parallel systems, that was a big deal. We’re encountering the same kinds of transition today in terms of rewriting our software, just in terms of the things that I deal with, which is writing numerical libraries. We’re rewriting everything to address issues of multicore.

Multicore presents many challenges in terms of performance that were not present with parallel computing. I know that seems a little strange, but it’s because of the fact that with multicore, things happen much faster. So the bandwidth has increased, latency has gotten better. So you can’t hesitate in what you’re doing. You’ll lose too much performance.

The model that we had for parallel processing was a fork-join sort of model — what I’ll call a bulk synchronous form. It was a loop then you did a bunch of things in parallel then you joined together at the end of that loop. You can’t do that with multicore. You need to do more asynchronous processing.

So you need to develop algorithms that really present a form of execution that is asynchronous and breaks that model of loop-level parallelism, because waiting for the tasks to finish is just too inefficient on these systems. It requires a rethinking of our algorithms and a rewriting of our software. So it’s that kind of thing that we have to go through again as we go to exascale.

HPCwire: Is this transition going to be different?

Dongarra: I think it is different, and it’s different for a few reasons. One is that we learned some lessons from the previous transitions that took place, and we don’t want to repeat that experience. The second reason is that there’s a general recognition that this change is going to more dramatic than it was in the previous transition. Going from thousands to hundreds of thousands of threads of execution, which is what we did before, is going to be different than going from hundreds of thousand to perhaps billions of threads. That change is going to have an enormous impact. And tied together with some of the architectural features that are being proposed today for exascale systems, is going to lead to a lot of tension, right at the software point.

Because of the steepness of the ascent from petascale to exascale, we should start this process as soon as possible. The extreme parallelism, the hybrid design, and because the tightening of the memory bandwidth bottleneck is going to become more extreme as we move to the future, we have to start addressing these issues now.

Also, the relative amount of memory that we have on exascale systems — that balance between FLOPS and bytes — is going to be changing. In the old, old days we thought: one byte per FLOP. When you look at petascale machines, that ratio has changed quite a bit, and when you look toward exascale, it’s going to change again in an even more dramatic way. That will cause some issues with the ability of our algorithms to scale as you grow the problem size.

The other issue deals with fault tolerance. When you have billions of parallel things, we’re going to have failure. So it’s going to become more of a normal part of computing that we’re going to be dropping or losing part of the computation. We have to be prepared to adjust to that somehow. In the past, we didn’t have to worry so much about that, and when we did, we performed a checkpoint and a restart. Well, for exascale, you can’t do a checkpoint. There’s just too much memory in the system, so it would take too long.

The software infrastructure can’t deal with that today, so it’s a call to action to deal with these hardware changes. If we don’t do anything, the software ecosystem would remain stagnant. So we have to look at different approaches and perhaps be more involved in the design of architecture, in the sense there will be a co-design with algorithms and applications people, and helping to design machines that make sense.

HPCwire: Do you think there’s general agreement about what the hardware will look like?

Dongarra: There are a number of constraints of the architecture for exascale. One constraint is cost. Everybody says a machine can cost no more than $200 million. You’re going to spend half your money on memory, so you have take that into consideration.

There are also other constraints that come into play. For example, the machine can consume no more than 20 MW. That’s thought to be the upper limit for a reasonable machine from the standpoint of power, cooling, etc. The machine we have here at Oak Ridge — the Jaguar supercomputer — is about 7 megawatts.

And then there’s the question of what kind of processors are we going to have. The thinking today is that there’s going to be two paths — what some people call them swim lanes — to exascale hardware.

One is going to be lightweight processors. By lightweight, we mean things like the Blue Gene [PowerPC] processor. One general way to characterize this architecture is 1GHz in processor speed, one thousand cores per node, and one million nodes per system. A second path to exascale is commodity processors together with accelerators, such as GPUs. The software would support both those models, although there would be differences we’d have to deal with.

Both of the models generate 10^18 FLOPS and both have on the order of a billion threads of execution. We realize that represents a lot of parallel processing and we need to support that in some manner. That’s today’s view of the hardware, although clearly, that could change.

HPCwire: So how would you engage vendors to build these exascale machines. What’s the business case?

Dongarra: Well, the business case may mean that the government, or governments, would have to provide incentives to the manufacturers, that is, to put up money so that they develop architectures in this direction. We can’t expect the vendors to drop the commodity side of their business to address this very small niche activity unless there’s an incentive to do so. I think the government is prepared to provide those incentives, and to work with the applications people to change that current model that we have, where things are just thrown over the fence.

The other thing that we realize is that we do have a very good mechanism for coordinating research at a global level. There’s some level of coordination done between the DOE and NSF, but there’s really no coordination across country boundaries. We’re looking at the EC, and the activities they have, the Japanese, perhaps the Chinese and Koreans, and so on, and trying to understand how to attack the software issues, by looking at dividing the work.

That requires a higher level of coordination at the government funding level to be able to target research in certain areas so we don’t duplicate efforts too much. And then we can also work together on things we have a mutual interest in.

The G8 countries recently put out a call for exascale software for applications. Seven of the G8 countries — the US, Canada, the UK, France, Germany, Japan, and Russia — have gotten together and put money on the table — 10 million Euros — to fund research and evaluate collaborative proposals on exascale software. They’re going to evaluate the proposals that were submitted and ask a certain number of the them to refine their ideas and submit full proposals. Part of ground rules for this is that you had to have a minimum of three countries involved in the proposal. This G8 initiative used the IESP as a model for describing what they wanted.

HPCwire: In a broad sense, what is the goal of the IESP?

Dongarra: The goal of the IESP is to come up with an international plan for developing the next generation of open source software for high performance scientific computing. So our goal is to develop a roadmap, and that roadmap would lay out issues, priorities, and describe the software stack that’s necessary for exascale.

This software stack has things from the system side, like operating systems, I/O, the external environment and system management. It also deals with the development environment, which looks at programming models, frameworks for developing applications, compilers, numerical libraries and debugging tools. There’s another element that tries to integrate applications and use them as a vehicle for testing the ideas.

And finally there’s an avenue that I’ll call cross-cutting issues — issues that really impact all of the software that we’re talking about. That has to do with resilience, power management, performance optimization, and overall programmability.

Today we don’t really have this global evaluation of missing components within the stack itself. We want to make sure that we understand what the needs are and that the research would cover those needs. So we’re trying to define and develop the priorities to help with this planning process.

Ultimately we feel the scale of investments is such that we really need an international input on the requirements, so we want to work together with Americans, Europeans, and Asians and really develop this larger vision for high performance computing — something that hasn’t been done in the past.

All of this sits on top of a recognition that these things are driven by the applications. We’re not just developing software in isolation. The applications people feel it’s critical to have exascale computing to further their area of research. The US DOE and NSF have been very strong in terms of developing those science drivers — areas like climate, nuclear energy, combustion, advanced materials, C02 sequestration, and basic science. These all play a part in the needs for exascale. So we’re working with the applications people in getting to that level.

HPCwire: The stack you’re describing, from the OS on down, sounds like a rather substantial body of software. How would it be maintained?

Dongarra: Once it gets developed, a mechanism has to be put in place for the care of the software. There’s a path to exascale. Going from petaflops to 10 petaflops to 100 petaflops, and finally to exascale, are going to require changes along the way. It will require a redeployment in certain areas and a strategy for phasing in the software and the research to necessary to develop it.

And there has to be the ultimate repositing of the information and keeping it in a state where it can, in fact, be used. So yes, that becomes an important aspect of the exascale software initiative.

HPCwire: An example of this approach that comes to mind is the MPI effort, which came out of the HPC research community, and was subsequently supported by vendors. Do you see that as a model for what’s being done here, but at a much broader scale?

Dongarra: Absolutely. We have a community that develops software and vendors picking it up, perhaps refining it, and adding value to the software for their own hardware platforms. MPI is a good example, where we have a standard, which is not software, but a description of what the software should do. And then we have activities that provide a working version of that standard. MPICH is a good example of that; Open MPI is another.

Open MPI is more of a community-involved effort that has input from a larger group to develop an open source implementation. Open source is one of the major goals of the exascale software initiative, although we don’t specify the exact licensing structure within that context. That’s something we’ll have to face at some point.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are already ensconced at the venue. In any case, you're busy, so he Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the GFS – its first new dynamical core in nearly 40 years – w Read more…

By Oliver Peckham

NCSU Researchers Overcome Key DNA-Based Data Storage Obstacles

June 12, 2019

In the race for increasingly dense data storage solutions, DNA-based storage is surely one of the most curious – and a team of North Carolina State University (NCSU) researchers just brought it two steps closer to bein Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

Scientists Solve Cosmic Mystery Through Black Hole Simulations

June 6, 2019

An international team of researchers has finally solved a long-standing cosmic mystery – and to do it, they needed to produce the most detailed black hole simulation ever created. Read more…

By Oliver Peckham

Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This