Cray Sets Sights On Cascade Supercomputer, Exascale Milestone

By Michael Feldman

June 10, 2010

Cray’s recent unveiling of its XE6 supercomputer, previously codenamed “Baker,” marks the beginning of a larger strategy that lays the foundation for the company’s future heterogeneous supercomputing products. At last week’s International Supercomputing Conference (ISC) in Hamburg, HPCwire sat down with Cray CTO Steve Scott to talk about life after Baker, where he revealed the company’s plans for its upcoming “Cascade” supercomputer and how the exascale landscape is shaping up.

Cascade will be Cray’s first capability supercomputer based on Intel x86 processors. Starting with the XT3 machine in 2004, all of the company’s non-proprietary top-end supers have been built with AMD Opteron CPUs. According to Scott, the first Cascade system delivered will sport Xeon-powered server blades, but the intention is to eventually support AMD Opteron processors on this architecture as well. Like most HPC vendors, Cray appears committed to following this dual-x86 product path.

The development of Cascade is being subsidized by DARPA’s HPCS (High Productivity Computing Systems) program. The third and final phase of the contract with Cray set aside $250 million to help the company complete development of the hardware and the supporting system software. (IBM was allocated $244 million for its corresponding PERCS system.) According to Scott, Cascade is currently on track to be delivered sometime in the second half of 2012. Specific product timetables for the Opteron version are still to be determined, and will ultimately depend upon customer demand as well as AMD’s processor schedule.

A new system interconnect, codenamed “Aries,” is being developed for the Cascade-class machines. To support a dual Intel-AMD strategy on this architecture, Cray is going to begin using PCI-Express as the processor interface to the interconnect ASIC. The current SeaStar, and now Gemini interconnect, are tied to Opteron’s native HyperTransport link. While it might seem natural to think that Cray would hook into Intel’s QPI for network connectivity on a Xeon-based machine, opting for PCI-Express meant Cray could support the same network across both processor architectures — and any future ones as well. According to Scott, they’re looking to tape out the Aries chip by the end of 2010.

For Cray, Cascade represents a fairly significant break with the XT/XE line of supercomputers, which have maintained a smooth hardware upgrade path for the past six years. Although the software stack and application codes can be carried forward onto Cascade, the reworked hardware architecture means users will no longer be able to extend their XT or XE infrastructure with this new technology.

Cascade will also have an accelerator blade to go along with the x86-based blades. Originally, this component was going to be developed under the HPCS contract, but for various reasons the work got canceled, which culminated in a contract renegotiation to reduce the scope of the contract late in 2009. According to Scott, Cray was working with Intel on the technology, but as of now they are undecided about which accelerator will end up in the Cascade product line. The most likely candidates include NVIDIA’s Tesla GPUs, AMD’s FireStream GPUs, and Intel’s “Many Integrated Core” (MIC) coprocessor, which was announced at ISC last week. At present, Cray is talking with all three vendors about the roadmaps for their respective accelerator solutions.

The XE6 supercomputer, slated for delivery in Q3 2010, will also get an accelerator blade, said Scott, who confirmed that it will be based on the latest NVIDIA Tesla-20 (Fermi) GPUs, which are just coming into production now. As of now, the release date for the XE6 accelerator blade option is still under wraps, but it’s reasonable to think that it will be announced before the end of the year. Cray also partnered with NVIDIA to put in a bid for DARPA’s Ubiquitous High Performance Computing (UHPC) program for “ExtremeScale architectures,” which is aimed at innovative terascale to petascale supercomputing systems.

Accelerators appear to be a big part of Cray’s strategy going forward. “In the long run we’re going to have to change the trajectory,” said Scott. “Plain old multicore x86 won’t do it. Most of the heavy lifting is going to have to be done by processors that are specifically designed, first order, for power efficiency, not for running single threads fast. So we’re going to need heterogeneity in some form.”

Right now, the software support for accelerators is in its infancy. So Scott is not expecting the HPC community to shift en masse to this new computing model overnight. Even after the XE6 accelerator blades hit the streets, Scott expects the majority of systems sold will be straight Opteron-based machines. “Over time that’s going to shift, said Scott. “I would predict five years from now, the bulk of serious HPC is going to be done with some kind of accelerated heterogeneous architecture.”

Further down the road, heterogeneous processing will form the foundation of Cray exascale architectures. In 2018, the year Scott predicts Cray will have a machine that can deliver a sustained application exaflop, heterogeneous computing will likely be much more highly integrated. According to Scott, CPU-GPU hybrid processors (or the equivalent), along the lines of AMD’s Fusion architecture, will be generally available and powerful enough to form the basis of HPC machines. He believes both NVIDIA and Intel will be offering their own versions of integrated CPU-accelerator chips. “That’s clearly the direction to take,” he asserted. “The more tightly you can couple those two different types of processors together, the better off we’ll be.”

He also foresees optical interconnects integrated directly into the chip package, with possibly some electrical interconnect on the board, as well as networks that are very low diameter so that you don’t have to expend a lot of power retransmitting data. In addition, Scott envisions another level of memory between the off-chip DIMMs and on-chip cache, implemented perhaps with 3D stacking technology — the idea being to substantially increase the bandwidth to the processors, while reducing power. “It’s not like it’s going to be easy,” noted Scott. “But I think there’s definitely a path.”

As far as what lies beyond exascale, Cray has nothing on the drawing board yet, but neither does anyone else. Assuming, historical trends hold, the first zettaflop systems will show up around 2028. But they are likely to be based on technologies that have yet to make it out of the research lab.

“I do think that exascale is going to be the last one that we’re going to get to with traditional silicon technology,” said Scott. “I don’t know what’s going to be next, but if you look back 100 years, we’ve gone from mechanical tabulating machines, to electro-mechanical relays, to vacuum tubes, to discrete transistors, to integrated circuits. If you look at that history you see a straight line of performance growth through multiple technology transitions. That doesn’t prove a damn thing. But it gives me some sort of hope that we’ll come up with something post-silicon ICs to take us forward.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This