Cray Sets Sights On Cascade Supercomputer, Exascale Milestone

By Michael Feldman

June 10, 2010

Cray’s recent unveiling of its XE6 supercomputer, previously codenamed “Baker,” marks the beginning of a larger strategy that lays the foundation for the company’s future heterogeneous supercomputing products. At last week’s International Supercomputing Conference (ISC) in Hamburg, HPCwire sat down with Cray CTO Steve Scott to talk about life after Baker, where he revealed the company’s plans for its upcoming “Cascade” supercomputer and how the exascale landscape is shaping up.

Cascade will be Cray’s first capability supercomputer based on Intel x86 processors. Starting with the XT3 machine in 2004, all of the company’s non-proprietary top-end supers have been built with AMD Opteron CPUs. According to Scott, the first Cascade system delivered will sport Xeon-powered server blades, but the intention is to eventually support AMD Opteron processors on this architecture as well. Like most HPC vendors, Cray appears committed to following this dual-x86 product path.

The development of Cascade is being subsidized by DARPA’s HPCS (High Productivity Computing Systems) program. The third and final phase of the contract with Cray set aside $250 million to help the company complete development of the hardware and the supporting system software. (IBM was allocated $244 million for its corresponding PERCS system.) According to Scott, Cascade is currently on track to be delivered sometime in the second half of 2012. Specific product timetables for the Opteron version are still to be determined, and will ultimately depend upon customer demand as well as AMD’s processor schedule.

A new system interconnect, codenamed “Aries,” is being developed for the Cascade-class machines. To support a dual Intel-AMD strategy on this architecture, Cray is going to begin using PCI-Express as the processor interface to the interconnect ASIC. The current SeaStar, and now Gemini interconnect, are tied to Opteron’s native HyperTransport link. While it might seem natural to think that Cray would hook into Intel’s QPI for network connectivity on a Xeon-based machine, opting for PCI-Express meant Cray could support the same network across both processor architectures — and any future ones as well. According to Scott, they’re looking to tape out the Aries chip by the end of 2010.

For Cray, Cascade represents a fairly significant break with the XT/XE line of supercomputers, which have maintained a smooth hardware upgrade path for the past six years. Although the software stack and application codes can be carried forward onto Cascade, the reworked hardware architecture means users will no longer be able to extend their XT or XE infrastructure with this new technology.

Cascade will also have an accelerator blade to go along with the x86-based blades. Originally, this component was going to be developed under the HPCS contract, but for various reasons the work got canceled, which culminated in a contract renegotiation to reduce the scope of the contract late in 2009. According to Scott, Cray was working with Intel on the technology, but as of now they are undecided about which accelerator will end up in the Cascade product line. The most likely candidates include NVIDIA’s Tesla GPUs, AMD’s FireStream GPUs, and Intel’s “Many Integrated Core” (MIC) coprocessor, which was announced at ISC last week. At present, Cray is talking with all three vendors about the roadmaps for their respective accelerator solutions.

The XE6 supercomputer, slated for delivery in Q3 2010, will also get an accelerator blade, said Scott, who confirmed that it will be based on the latest NVIDIA Tesla-20 (Fermi) GPUs, which are just coming into production now. As of now, the release date for the XE6 accelerator blade option is still under wraps, but it’s reasonable to think that it will be announced before the end of the year. Cray also partnered with NVIDIA to put in a bid for DARPA’s Ubiquitous High Performance Computing (UHPC) program for “ExtremeScale architectures,” which is aimed at innovative terascale to petascale supercomputing systems.

Accelerators appear to be a big part of Cray’s strategy going forward. “In the long run we’re going to have to change the trajectory,” said Scott. “Plain old multicore x86 won’t do it. Most of the heavy lifting is going to have to be done by processors that are specifically designed, first order, for power efficiency, not for running single threads fast. So we’re going to need heterogeneity in some form.”

Right now, the software support for accelerators is in its infancy. So Scott is not expecting the HPC community to shift en masse to this new computing model overnight. Even after the XE6 accelerator blades hit the streets, Scott expects the majority of systems sold will be straight Opteron-based machines. “Over time that’s going to shift, said Scott. “I would predict five years from now, the bulk of serious HPC is going to be done with some kind of accelerated heterogeneous architecture.”

Further down the road, heterogeneous processing will form the foundation of Cray exascale architectures. In 2018, the year Scott predicts Cray will have a machine that can deliver a sustained application exaflop, heterogeneous computing will likely be much more highly integrated. According to Scott, CPU-GPU hybrid processors (or the equivalent), along the lines of AMD’s Fusion architecture, will be generally available and powerful enough to form the basis of HPC machines. He believes both NVIDIA and Intel will be offering their own versions of integrated CPU-accelerator chips. “That’s clearly the direction to take,” he asserted. “The more tightly you can couple those two different types of processors together, the better off we’ll be.”

He also foresees optical interconnects integrated directly into the chip package, with possibly some electrical interconnect on the board, as well as networks that are very low diameter so that you don’t have to expend a lot of power retransmitting data. In addition, Scott envisions another level of memory between the off-chip DIMMs and on-chip cache, implemented perhaps with 3D stacking technology — the idea being to substantially increase the bandwidth to the processors, while reducing power. “It’s not like it’s going to be easy,” noted Scott. “But I think there’s definitely a path.”

As far as what lies beyond exascale, Cray has nothing on the drawing board yet, but neither does anyone else. Assuming, historical trends hold, the first zettaflop systems will show up around 2028. But they are likely to be based on technologies that have yet to make it out of the research lab.

“I do think that exascale is going to be the last one that we’re going to get to with traditional silicon technology,” said Scott. “I don’t know what’s going to be next, but if you look back 100 years, we’ve gone from mechanical tabulating machines, to electro-mechanical relays, to vacuum tubes, to discrete transistors, to integrated circuits. If you look at that history you see a straight line of performance growth through multiple technology transitions. That doesn’t prove a damn thing. But it gives me some sort of hope that we’ll come up with something post-silicon ICs to take us forward.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This