For AMD, All Paths Lead to CPU-GPU Fusion

By Michael Feldman

June 14, 2010

One of the more interesting aspects to the GPU computing craze is the diversity of solutions that are emerging from the chip vendors. NVIDIA is currently out in front of the pack with its CUDA-architected Tesla GPUs, purpose-built for HPC. Intel, with the reintroduction of its Larrabee technology (now known as the “Many Integrated Core” (MIC) architecture), is pursuing the un-GPU model of data parallel computing. That leaves AMD, with its dual path of FireStream GPUs for “stream computing” and CPU-GPU Fusion technology for everything else.

But its the Fusion technology that sets AMD apart from its chip-making rivals. Because of the 2006 acquisition of ATI, the company stands alone as the processor vendor with mature technologies for both CPUs and GPUs. This makes the integration of the two architectures onto the same piece of silicon a natural fit for the company.

AMD, of course, was looking to exploit that advantage from the start. They originally planned to push out the first Fusion parts in 2009, but the complexity of folding ATI into the company and the subsequent recession slowed down the effort considerably, delaying the roadmap for two years. AMD is only now gearing up to launch its first Fusion processors, also known as Accelerated Processing Units (APUs), sometime in 2011.

These first CPU-GPU products are aimed at the desktop and laptop market to improve the visual computing experience for PC users (mostly via Microsoft’s DirectX framework). But technical computing users are starting to look at the Fusion architecture as a way to bring GPU-style parallel processing much closer to the CPU.

To date, all serious GPU computing is being done on relatively high-end discrete graphics processors that are hooked up to a host CPU system via a PCI-express (PCIe) link. This is the case for both NVIDIA’s and AMD’s GPU computing products — Tesla and FireStream, respectively. Although some HPC applications have recorded performance gains on the order on of 10X to 1,000X, the overhead of shuttling data back and forth across the PCIe link and the clunky software used to support this model suggests that off-chip acceleration is just the first chapter of the GPU computing story.

Last week, Northeastern University, in Boston, held an academic research day for GPU computing to get the word out about how it’s being used for technical computing applications in the research community. The event was organized in conjunction with AMD’s External Research Office as part of an outreach to the other academicians, and to put forth the company’s vision of heterogeneous computing as well as its upcoming CPU-GPU products. HPCwire spoke with Dave Kaeli, the director of the Northeastern University’s Computer Architecture Research Laboratory, who gave the event’s opening talk on “Exploiting Heterogeneous CPUs/GPUs,” in which he talked about some of his experiences with the technology.

Much of Kaeli’s work is focused on using GPUs for biomedical imaging applications — work that is being funded by the NSF and by AMD itself. There are two classes of problems he’s working on. The first is for image-guided biopsies, where real-time visual processing and high data bandwidth are the principal requirements. The other is for the digital reconstruction of a single image, which can take on the order of tens of hours — certainly not real-time, but time-critical for certain medical scenarios.

In the latter case, Kaeli is using an ATI Radeon 5870 GPU, which boasts a raw performance of 2.72 teraflops (single precision floating point). Compared to a CPU-only implementation, an order of magnitude speed-up is possible for this type of image reconstruction. Detection of breast cancer and coronary blockage are two of the main applications here, and in this case, the patient goes home and then returns later for a second consultation. The reduced turnaround time has the potential to produce better outcomes as well as reduce costs.

Some of Kaeli’s effort has gone toward developing GPU-based biomedical imaging libraries in OpenCL, an open language standard for parallel processing across GPUs and CPUs. He says the work has reached the point where they’re now engaged with a major medical equipment manufacturer to help design the company’s next-generation ultrasound devices. The plan is to incorporate GPUs to support very high-resolution 3D ultrasound in a portable, low-power device.

Currently, the medical manufacturer is using a combination of FPGAs and DSPs for this class of device. Not only does that design stretch the power envelop for a mobile platform, but the lack of a commodity-driven solution makes the upgrade path problematic. Being able to write the application in a language like OpenCL, which is portable across multiple silicon generations (not to mention chip vendors), is a much more attractive proposition for manufacturers.

Initially the ultrasound appliance will be equipped with a discrete GPU, with the idea of migrating to a CPU-GPU processor later on. “The whole idea of moving from a high performance graphics card to an embedded GPU to a hybrid, heterogeneous Fusion chip is a very attractive in that domain,” explains Kaeli. “It’s really why we’re so engaged with AMD at this point. We recognize that they are providing leadership in this particular area right now.”

Kaeli says heterogeneous processing presents a lot of attractive features, both in terms of ease of coding and from a power-performance standpoint. On the power usage side, the benefits of CPU-GPU integration extends across both traditional and technical computing applications. For scientific codes though, the current process technology (45 nm) limits the size of the GPU that can fit on the same die as the CPU, and thus the ultimate performance of the chip. But as Moore’s Law works its magic, a very respectable-sized GPU will be able to be share the die with a CPU.

From a programmer’s point of view, having the CPU and GPU sharing the same RAM is a big improvement from the split memory model with discrete devices. And the latency associated with passing data back and forth between two separate devices is much better (i.e., lower) when the CPU and GPU are on the same die. This is especially true for real-time embedded applications, where latency is particularly critical.

Kaeli is also involved with a surgical simulator application for training doctors. In this case, finite element analysis (FEA) is used to simulate blood flow, cutting, skin tension, and so on. “We can’t do all of that on a GPU,” says Kaeli. “A lot of that has to be done on the CPU.”

Besides biomedical image research and other medical applications, Kaeli is involved with GPU compiler work, developing techniques for efficient mapping of algorithms onto GPUs, and looking at virtualization technology that leverages multiple GPUs. His group is also researching cross compilers that can take CUDA applications for NVIDIA GPUs and convert the source code to OpenCL. “We actually have working examples of that already,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This