For AMD, All Paths Lead to CPU-GPU Fusion

By Michael Feldman

June 14, 2010

One of the more interesting aspects to the GPU computing craze is the diversity of solutions that are emerging from the chip vendors. NVIDIA is currently out in front of the pack with its CUDA-architected Tesla GPUs, purpose-built for HPC. Intel, with the reintroduction of its Larrabee technology (now known as the “Many Integrated Core” (MIC) architecture), is pursuing the un-GPU model of data parallel computing. That leaves AMD, with its dual path of FireStream GPUs for “stream computing” and CPU-GPU Fusion technology for everything else.

But its the Fusion technology that sets AMD apart from its chip-making rivals. Because of the 2006 acquisition of ATI, the company stands alone as the processor vendor with mature technologies for both CPUs and GPUs. This makes the integration of the two architectures onto the same piece of silicon a natural fit for the company.

AMD, of course, was looking to exploit that advantage from the start. They originally planned to push out the first Fusion parts in 2009, but the complexity of folding ATI into the company and the subsequent recession slowed down the effort considerably, delaying the roadmap for two years. AMD is only now gearing up to launch its first Fusion processors, also known as Accelerated Processing Units (APUs), sometime in 2011.

These first CPU-GPU products are aimed at the desktop and laptop market to improve the visual computing experience for PC users (mostly via Microsoft’s DirectX framework). But technical computing users are starting to look at the Fusion architecture as a way to bring GPU-style parallel processing much closer to the CPU.

To date, all serious GPU computing is being done on relatively high-end discrete graphics processors that are hooked up to a host CPU system via a PCI-express (PCIe) link. This is the case for both NVIDIA’s and AMD’s GPU computing products — Tesla and FireStream, respectively. Although some HPC applications have recorded performance gains on the order on of 10X to 1,000X, the overhead of shuttling data back and forth across the PCIe link and the clunky software used to support this model suggests that off-chip acceleration is just the first chapter of the GPU computing story.

Last week, Northeastern University, in Boston, held an academic research day for GPU computing to get the word out about how it’s being used for technical computing applications in the research community. The event was organized in conjunction with AMD’s External Research Office as part of an outreach to the other academicians, and to put forth the company’s vision of heterogeneous computing as well as its upcoming CPU-GPU products. HPCwire spoke with Dave Kaeli, the director of the Northeastern University’s Computer Architecture Research Laboratory, who gave the event’s opening talk on “Exploiting Heterogeneous CPUs/GPUs,” in which he talked about some of his experiences with the technology.

Much of Kaeli’s work is focused on using GPUs for biomedical imaging applications — work that is being funded by the NSF and by AMD itself. There are two classes of problems he’s working on. The first is for image-guided biopsies, where real-time visual processing and high data bandwidth are the principal requirements. The other is for the digital reconstruction of a single image, which can take on the order of tens of hours — certainly not real-time, but time-critical for certain medical scenarios.

In the latter case, Kaeli is using an ATI Radeon 5870 GPU, which boasts a raw performance of 2.72 teraflops (single precision floating point). Compared to a CPU-only implementation, an order of magnitude speed-up is possible for this type of image reconstruction. Detection of breast cancer and coronary blockage are two of the main applications here, and in this case, the patient goes home and then returns later for a second consultation. The reduced turnaround time has the potential to produce better outcomes as well as reduce costs.

Some of Kaeli’s effort has gone toward developing GPU-based biomedical imaging libraries in OpenCL, an open language standard for parallel processing across GPUs and CPUs. He says the work has reached the point where they’re now engaged with a major medical equipment manufacturer to help design the company’s next-generation ultrasound devices. The plan is to incorporate GPUs to support very high-resolution 3D ultrasound in a portable, low-power device.

Currently, the medical manufacturer is using a combination of FPGAs and DSPs for this class of device. Not only does that design stretch the power envelop for a mobile platform, but the lack of a commodity-driven solution makes the upgrade path problematic. Being able to write the application in a language like OpenCL, which is portable across multiple silicon generations (not to mention chip vendors), is a much more attractive proposition for manufacturers.

Initially the ultrasound appliance will be equipped with a discrete GPU, with the idea of migrating to a CPU-GPU processor later on. “The whole idea of moving from a high performance graphics card to an embedded GPU to a hybrid, heterogeneous Fusion chip is a very attractive in that domain,” explains Kaeli. “It’s really why we’re so engaged with AMD at this point. We recognize that they are providing leadership in this particular area right now.”

Kaeli says heterogeneous processing presents a lot of attractive features, both in terms of ease of coding and from a power-performance standpoint. On the power usage side, the benefits of CPU-GPU integration extends across both traditional and technical computing applications. For scientific codes though, the current process technology (45 nm) limits the size of the GPU that can fit on the same die as the CPU, and thus the ultimate performance of the chip. But as Moore’s Law works its magic, a very respectable-sized GPU will be able to be share the die with a CPU.

From a programmer’s point of view, having the CPU and GPU sharing the same RAM is a big improvement from the split memory model with discrete devices. And the latency associated with passing data back and forth between two separate devices is much better (i.e., lower) when the CPU and GPU are on the same die. This is especially true for real-time embedded applications, where latency is particularly critical.

Kaeli is also involved with a surgical simulator application for training doctors. In this case, finite element analysis (FEA) is used to simulate blood flow, cutting, skin tension, and so on. “We can’t do all of that on a GPU,” says Kaeli. “A lot of that has to be done on the CPU.”

Besides biomedical image research and other medical applications, Kaeli is involved with GPU compiler work, developing techniques for efficient mapping of algorithms onto GPUs, and looking at virtualization technology that leverages multiple GPUs. His group is also researching cross compilers that can take CUDA applications for NVIDIA GPUs and convert the source code to OpenCL. “We actually have working examples of that already,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combined peak computing capacity, the new systems will extend the a Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

ASC18: Tough Applications & Tough Luck

May 17, 2018

The applications at the ASC18 Student Cluster Competition were tough. Tougher than the $3.99 steak special at your local greasy spoon restaurant. The apps are so tough that even Chuck Norris backs away from them slowly. Read more…

By Dan Olds

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Mastering the Big Data Challenge in Cognitive Healthcare

Patrick Chain, genomics researcher at Los Alamos National Laboratory, posed a question in a recent blog: What if a nurse could swipe a patient’s saliva and run a quick genetic test to determine if the patient’s sore throat was caused by a cold virus or a bacterial infection? Read more…

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in Read more…

By Alex R. Larzelere

Japan Meteorological Agency Takes Delivery of Pair of Crays

May 21, 2018

Cray has supplied two identical Cray XC50 supercomputers to the Japan Meteorological Agency (JMA) in northwestern Tokyo. Boasting more than 18 petaflops combine Read more…

By Tiffany Trader

ASC18: Final Results Revealed & Wrapped Up

May 17, 2018

It was an exciting week at ASC18 in Nanyang, China. The student teams braved extreme heat, extremely difficult applications, and extreme competition in order to cross the cluster competition finish line. The gala awards ceremony took place on Wednesday. The auditorium was packed with student teams, various dignitaries, the media, and other interested parties. So what happened? Read more…

By Dan Olds

Spring Meetings Underscore Quantum Computing’s Rise

May 17, 2018

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and th Read more…

By Alex R. Larzelere

Quantum Network Hub Opens in Japan

May 17, 2018

Following on the launch of its Q Commercial quantum network last December with 12 industrial and academic partners, the official Japanese hub at Keio University is now open to facilitate the exploration of quantum applications important to science and business. The news comes a week after IBM announced that North Carolina State University was the first U.S. university to join its Q Network. Read more…

By Tiffany Trader

Democratizing HPC: OSC Releases Version 1.3 of OnDemand

May 16, 2018

Making HPC resources readily available and easier to use for scientists who may have less HPC expertise is an ongoing challenge. Open OnDemand is a project by t Read more…

By John Russell

PRACE 2017 Annual Report: Exascale Aspirations; Industry Collaboration; HPC Training

May 15, 2018

The Partnership for Advanced Computing in Europe (PRACE) today released its annual report showcasing 2017 activities and providing a glimpse into thinking about Read more…

By John Russell

US Forms AI Brain Trust

May 11, 2018

Amid calls for a U.S. strategy for promoting AI development, the Trump administration is forming a senior-level panel to help coordinate government and industry research efforts. The Select Committee on Artificial Intelligence was announced Thursday (May 10) during a White House summit organized by the Office of Science and Technology Policy (OSTP). Read more…

By George Leopold

Emerging Advanced Scale Tech Trends Focus of Annual Tabor Conference

May 9, 2018

At Tabor Communications' annual Advanced Scale Forum (ASF) held this week in Austin, the focus was on enterprise adoption of HPC-class technologies and high performance data analytics (HPDA). It’s a confab that brings together end users (CIOs, IT planners, department heads) and vendors and encourages... Read more…

By the Editorial Team

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Leading Solution Providers

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

CFO Steps down in Executive Shuffle at Supermicro

January 31, 2018

Supermicro yesterday announced senior management shuffling including prominent departures, the completion of an audit linked to its delayed Nasdaq filings, and Read more…

By John Russell

Deep Learning Portends ‘Sea Change’ for Oil and Gas Sector

February 1, 2018

The billowing compute and data demands that spurred the oil and gas industry to be the largest commercial users of high-performance computing are now propelling Read more…

By Tiffany Trader

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

  • arrow
  • Click Here for More Headlines
  • arrow
Share This