For AMD, All Paths Lead to CPU-GPU Fusion

By Michael Feldman

June 14, 2010

One of the more interesting aspects to the GPU computing craze is the diversity of solutions that are emerging from the chip vendors. NVIDIA is currently out in front of the pack with its CUDA-architected Tesla GPUs, purpose-built for HPC. Intel, with the reintroduction of its Larrabee technology (now known as the “Many Integrated Core” (MIC) architecture), is pursuing the un-GPU model of data parallel computing. That leaves AMD, with its dual path of FireStream GPUs for “stream computing” and CPU-GPU Fusion technology for everything else.

But its the Fusion technology that sets AMD apart from its chip-making rivals. Because of the 2006 acquisition of ATI, the company stands alone as the processor vendor with mature technologies for both CPUs and GPUs. This makes the integration of the two architectures onto the same piece of silicon a natural fit for the company.

AMD, of course, was looking to exploit that advantage from the start. They originally planned to push out the first Fusion parts in 2009, but the complexity of folding ATI into the company and the subsequent recession slowed down the effort considerably, delaying the roadmap for two years. AMD is only now gearing up to launch its first Fusion processors, also known as Accelerated Processing Units (APUs), sometime in 2011.

These first CPU-GPU products are aimed at the desktop and laptop market to improve the visual computing experience for PC users (mostly via Microsoft’s DirectX framework). But technical computing users are starting to look at the Fusion architecture as a way to bring GPU-style parallel processing much closer to the CPU.

To date, all serious GPU computing is being done on relatively high-end discrete graphics processors that are hooked up to a host CPU system via a PCI-express (PCIe) link. This is the case for both NVIDIA’s and AMD’s GPU computing products — Tesla and FireStream, respectively. Although some HPC applications have recorded performance gains on the order on of 10X to 1,000X, the overhead of shuttling data back and forth across the PCIe link and the clunky software used to support this model suggests that off-chip acceleration is just the first chapter of the GPU computing story.

Last week, Northeastern University, in Boston, held an academic research day for GPU computing to get the word out about how it’s being used for technical computing applications in the research community. The event was organized in conjunction with AMD’s External Research Office as part of an outreach to the other academicians, and to put forth the company’s vision of heterogeneous computing as well as its upcoming CPU-GPU products. HPCwire spoke with Dave Kaeli, the director of the Northeastern University’s Computer Architecture Research Laboratory, who gave the event’s opening talk on “Exploiting Heterogeneous CPUs/GPUs,” in which he talked about some of his experiences with the technology.

Much of Kaeli’s work is focused on using GPUs for biomedical imaging applications — work that is being funded by the NSF and by AMD itself. There are two classes of problems he’s working on. The first is for image-guided biopsies, where real-time visual processing and high data bandwidth are the principal requirements. The other is for the digital reconstruction of a single image, which can take on the order of tens of hours — certainly not real-time, but time-critical for certain medical scenarios.

In the latter case, Kaeli is using an ATI Radeon 5870 GPU, which boasts a raw performance of 2.72 teraflops (single precision floating point). Compared to a CPU-only implementation, an order of magnitude speed-up is possible for this type of image reconstruction. Detection of breast cancer and coronary blockage are two of the main applications here, and in this case, the patient goes home and then returns later for a second consultation. The reduced turnaround time has the potential to produce better outcomes as well as reduce costs.

Some of Kaeli’s effort has gone toward developing GPU-based biomedical imaging libraries in OpenCL, an open language standard for parallel processing across GPUs and CPUs. He says the work has reached the point where they’re now engaged with a major medical equipment manufacturer to help design the company’s next-generation ultrasound devices. The plan is to incorporate GPUs to support very high-resolution 3D ultrasound in a portable, low-power device.

Currently, the medical manufacturer is using a combination of FPGAs and DSPs for this class of device. Not only does that design stretch the power envelop for a mobile platform, but the lack of a commodity-driven solution makes the upgrade path problematic. Being able to write the application in a language like OpenCL, which is portable across multiple silicon generations (not to mention chip vendors), is a much more attractive proposition for manufacturers.

Initially the ultrasound appliance will be equipped with a discrete GPU, with the idea of migrating to a CPU-GPU processor later on. “The whole idea of moving from a high performance graphics card to an embedded GPU to a hybrid, heterogeneous Fusion chip is a very attractive in that domain,” explains Kaeli. “It’s really why we’re so engaged with AMD at this point. We recognize that they are providing leadership in this particular area right now.”

Kaeli says heterogeneous processing presents a lot of attractive features, both in terms of ease of coding and from a power-performance standpoint. On the power usage side, the benefits of CPU-GPU integration extends across both traditional and technical computing applications. For scientific codes though, the current process technology (45 nm) limits the size of the GPU that can fit on the same die as the CPU, and thus the ultimate performance of the chip. But as Moore’s Law works its magic, a very respectable-sized GPU will be able to be share the die with a CPU.

From a programmer’s point of view, having the CPU and GPU sharing the same RAM is a big improvement from the split memory model with discrete devices. And the latency associated with passing data back and forth between two separate devices is much better (i.e., lower) when the CPU and GPU are on the same die. This is especially true for real-time embedded applications, where latency is particularly critical.

Kaeli is also involved with a surgical simulator application for training doctors. In this case, finite element analysis (FEA) is used to simulate blood flow, cutting, skin tension, and so on. “We can’t do all of that on a GPU,” says Kaeli. “A lot of that has to be done on the CPU.”

Besides biomedical image research and other medical applications, Kaeli is involved with GPU compiler work, developing techniques for efficient mapping of algorithms onto GPUs, and looking at virtualization technology that leverages multiple GPUs. His group is also researching cross compilers that can take CUDA applications for NVIDIA GPUs and convert the source code to OpenCL. “We actually have working examples of that already,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This