High-End Visualization the Open Source Way

By Michael Feldman

June 22, 2010

Ultimately supercomputing is a visual endeavor. Turning the so-called “data deluge” into pretty pictures and animations has always been the most straightforward way to extract insight from HPC simulations. But with the size of simulation datasets growing in tandem with the size of supercomputers, visualization has never been more challenging.

Visualization at scale is a problem peculiar to HPC, and therefore solutions are sometimes hard to come by. Generally, users have a choice of buying (or building) a domain-specific solution, purchasing a proprietary general-purpose product, or opting for an open-source solution.

It’s in the latter category that Kitware has made its mark. Founded in 1998, the company built a business around supporting the Visualization Toolkit (VTK), an open-source software library designed for computer graphics, image processing and visualization. VTK was born in 1993 at the GE Research Center in Schenectady, New York, as a software demonstration package that accompanied a visualization textbook, titled “The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics.” Both the software and the book were developed by GE employees Will Schroeder, Ken Martin and Bill Lorensen. After the book was published, interest in the software took off, and Schroeder and Martin went on to start up Kitware to support the burgeoning VTK community. Although Kitware’s original business model centered on visualization consulting services, the company has since expanded, adding a group that specializes in computer vision, one that does scientific data publishing, and another that focuses on software process and development.

But it’s the scientific computing group at Kitware that is aimed squarely at the HPC space. After Kitware was founded, Sandia and Los Alamos National labs contracted the company to help develop visualization tools for the simulations being run on the supercomputers at that time. A lot of the existing tools back then were either completely serial or used the shared-memory model of parallel computing and could not handle the data being produced by these large-scale supercomputer clusters. To fill that need, Kitware extended VTK to support distributed-memory parallel architectures.

As part of that work, they developed ParaView, an open-source visualization app that could be applied across a range of HPC-type applications. The initial funding for the effort was provided by a three-year contract from the DOE’s Accelerated Strategic Computing (ASCI) program, and in 2002, the first release of ParaView was made public. DoD labs, including the Army’s Engineer Research and Development Center (ERDC) and the Army Research Lab (ARL), subsequently kicked in additional money to expand the scope and functionality of the software. ParaView, which itself is based on VTK, has become one of the premier general-purpose applications for HPC visualization.

Today, ParaView can scale up and down across HPC infrastructure, from workstations to the largest supercomputers. When running on a supercomputer or (more commonly) a visualization cluster connected to one, ParaView runs in the client-server mode. In this case, the backend visualization runs in as a distributed parallel application with just user interface on the client side. ParaView has been ported to the Blue Gene architecture, the Cray XT line of supercomputers, Lawrence Livermore’s ASC Purple, as well as all commodity-based Linux and Windows clusters. On the client side, the software supports the usual suspects: Windows, Linux and Mac OS.

The largest users of VTK and ParaView are still in the DoD and DOE communities, which is not surprising when you consider how much of the big supercomputing hardware these two agencies own. Kitware has also worked with a few organizations in Europe, including the French electricity provider, Électricité de France (EDF), considered to be the world’s largest utility company. EDF also contributes to the VTK code base and has built its own tools on top of the library.

ParaView is especially good at working with Finite Element Analysis (FEA) codes, making it well-suited to a variety of applications at DOE and DoD computing centers. At Sandia, it’s being used to visualize the results of CTH, a shock physics code, as well as a number of material sciences applications used for nuclear weapons research. At Los Alamos, ParaView is being used across the open science domains, including cosmology, magnetohydrodynamics, and wind turbine modeling, to name a few. ParaView is also being applied to some of the climate simulations run at the lab, and the visualization results may wind up in the next Intergovernmental Panel on Climate Change (IPCC) report.

Besides the government space, Kitware also targets academia and commercial markets. Industry customers include oil & gas, pharmaceutical, and medical companies. However, because of the economic downturn, the majority of the company’s revenue is currently derived from the federal sector. Even in boom times, though, more than half of Kitware’s revenues come from government contracts.

According to Dr. Berk Geveci, who leads Kitware’s scientific computing group, approximately a quarter of the company’s revenue comes from small business grants issues by government agencies. These fall under the Small Business Innovation Research (SBIR) and the Small Business Technology Transfer (STTR) programs. Because a lot of these grants involve development of the open VTK and ParaView source code base, the business model becomes a virtuous circle for both Kitware and its customers. “We use those [grants] to develop our tools and toolkit, to add more functionality and make them available to the wider community,” explains Geveci. “We’ve been lucky that a lot of our collaborators understand the value of open source.”

One of Kitware’s more recent efforts is to provide an API for ParaView so that it can be directly coupled to a simulation code and run in the same process space. The goal in coupling is to avoid I/O as much as possible, keeping what would have been post-processing inside the simulation itself. At the same time, doing the visualization in-situ makes better use of the available computational resources. According to Geveci, the nice thing about the ParaView API is that you don’t have to change the internal data structures. You just add ParaView calls in the application to do the initialization, visualization functions and then finalization.

The ParaView library is currently being used with PHASTA, a CFD simulation code that can scale extremely well. Early testing has been performed on an IBM Blue Gene/L supercomputer at the Rensselaer Polytechnic Institute. At some point they would like to run ParaView in this coprocessing model on the Jaguar supercomputer at Oak Ridge National Lab. “Our goal is to scale that functionality all the way to petascale and beyond,” says Geveci.

ParaView is not alone in the open source arena. VisIt was originally developed at Lawrence Livermore National Laboratory under ASCI and is now supported by the DOE’s Scientific Discovery Through Advanced Computing (SciDAC) program. Like ParaView, VisIt is based on the VTK library. VisTrails, 3DSlicer, MayaVi, and OsiriX are other visualization apps developed with VTK, but they tend to be more specialized and are not targeted for large-scale HPC.

CEI’s EnSight is the big competitor to ParaView in the commercial arena, especially in verticals like aerospace, where Kitware is trying to make inroads. Compared to open source visualization, EnSight has been around much longer and is more fully featured, but is less common at the big government labs.

“Government and academic supercomputing sites tend to prefer open source,” notes Geveci. “So you won’t necessarilly see EnSight in many of them. In industry, EnSight may be on more machines than Visit and ParaView. Hopefully, in time, we’ll change that too.”

A future area of interest for Kitware is support for distance visualization. Being able to view the results of a simulation without having to move the data off the supercomputing site is becoming more necessary as datasets grow in size. Along those same lines is the concept of collaborative visualization, enabling multiple researchers at different sites to share results and look at the data together. A lot of this will be enabled by Web-based interfaces, which are slowly edging out the traditional desktop GUI. “The idea is to share data and visualization of data as a larger community,” explains Geveci. “Enabling sharing of data and results through distance visualization and collaboration is very important to us and I think is going to be important to the community at large.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cos Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

AWS Solution Channel

Royalty-free stock illustration ID: 1616974732

Using the Slurm REST API to integrate with distributed architectures on AWS

The Slurm Workload Manager by SchedMD is a popular HPC scheduler and is supported by AWS ParallelCluster, an elastic HPC cluster management service offered by AWS. Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over th Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

SC21’s Student Cluster Competition Winners Announced

November 19, 2021

SC21 may have been the first major supercomputing conference to return to in-person activities, but not everything returned to the live menu: the Student Cluster Competition – held virtually at ISC 2020, SC20 and ISC 2021 – was again held virtually at SC21. Nevertheless, Students@SC Chair Jay Lofstead took the physical stage at SC21 on Thursday to announce the... Read more…

MLPerf Issues HPC 1.0 Benchmark Results Featuring Impressive Systems (Think Fugaku)

November 19, 2021

Earlier this week MLCommons issued results from its latest MLPerf HPC training benchmarking exercise. Unlike other MLPerf benchmarks, which mostly measure the t Read more…

Gordon Bell Special Prize Goes to World-Shaping COVID Droplet Work

November 18, 2021

For the second (and, hopefully, final) year in a row, SC21 included a second major research award alongside the ACM 2021 Gordon Bell Prize: the Gordon Bell Special Prize for High Performance Computing-Based COVID-19 Research. Last year, the first iteration of this award went to simulations of the SARS-CoV-2 spike protein; this year, the prize went... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire