High-End Visualization the Open Source Way

By Michael Feldman

June 22, 2010

Ultimately supercomputing is a visual endeavor. Turning the so-called “data deluge” into pretty pictures and animations has always been the most straightforward way to extract insight from HPC simulations. But with the size of simulation datasets growing in tandem with the size of supercomputers, visualization has never been more challenging.

Visualization at scale is a problem peculiar to HPC, and therefore solutions are sometimes hard to come by. Generally, users have a choice of buying (or building) a domain-specific solution, purchasing a proprietary general-purpose product, or opting for an open-source solution.

It’s in the latter category that Kitware has made its mark. Founded in 1998, the company built a business around supporting the Visualization Toolkit (VTK), an open-source software library designed for computer graphics, image processing and visualization. VTK was born in 1993 at the GE Research Center in Schenectady, New York, as a software demonstration package that accompanied a visualization textbook, titled “The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics.” Both the software and the book were developed by GE employees Will Schroeder, Ken Martin and Bill Lorensen. After the book was published, interest in the software took off, and Schroeder and Martin went on to start up Kitware to support the burgeoning VTK community. Although Kitware’s original business model centered on visualization consulting services, the company has since expanded, adding a group that specializes in computer vision, one that does scientific data publishing, and another that focuses on software process and development.

But it’s the scientific computing group at Kitware that is aimed squarely at the HPC space. After Kitware was founded, Sandia and Los Alamos National labs contracted the company to help develop visualization tools for the simulations being run on the supercomputers at that time. A lot of the existing tools back then were either completely serial or used the shared-memory model of parallel computing and could not handle the data being produced by these large-scale supercomputer clusters. To fill that need, Kitware extended VTK to support distributed-memory parallel architectures.

As part of that work, they developed ParaView, an open-source visualization app that could be applied across a range of HPC-type applications. The initial funding for the effort was provided by a three-year contract from the DOE’s Accelerated Strategic Computing (ASCI) program, and in 2002, the first release of ParaView was made public. DoD labs, including the Army’s Engineer Research and Development Center (ERDC) and the Army Research Lab (ARL), subsequently kicked in additional money to expand the scope and functionality of the software. ParaView, which itself is based on VTK, has become one of the premier general-purpose applications for HPC visualization.

Today, ParaView can scale up and down across HPC infrastructure, from workstations to the largest supercomputers. When running on a supercomputer or (more commonly) a visualization cluster connected to one, ParaView runs in the client-server mode. In this case, the backend visualization runs in as a distributed parallel application with just user interface on the client side. ParaView has been ported to the Blue Gene architecture, the Cray XT line of supercomputers, Lawrence Livermore’s ASC Purple, as well as all commodity-based Linux and Windows clusters. On the client side, the software supports the usual suspects: Windows, Linux and Mac OS.

The largest users of VTK and ParaView are still in the DoD and DOE communities, which is not surprising when you consider how much of the big supercomputing hardware these two agencies own. Kitware has also worked with a few organizations in Europe, including the French electricity provider, Électricité de France (EDF), considered to be the world’s largest utility company. EDF also contributes to the VTK code base and has built its own tools on top of the library.

ParaView is especially good at working with Finite Element Analysis (FEA) codes, making it well-suited to a variety of applications at DOE and DoD computing centers. At Sandia, it’s being used to visualize the results of CTH, a shock physics code, as well as a number of material sciences applications used for nuclear weapons research. At Los Alamos, ParaView is being used across the open science domains, including cosmology, magnetohydrodynamics, and wind turbine modeling, to name a few. ParaView is also being applied to some of the climate simulations run at the lab, and the visualization results may wind up in the next Intergovernmental Panel on Climate Change (IPCC) report.

Besides the government space, Kitware also targets academia and commercial markets. Industry customers include oil & gas, pharmaceutical, and medical companies. However, because of the economic downturn, the majority of the company’s revenue is currently derived from the federal sector. Even in boom times, though, more than half of Kitware’s revenues come from government contracts.

According to Dr. Berk Geveci, who leads Kitware’s scientific computing group, approximately a quarter of the company’s revenue comes from small business grants issues by government agencies. These fall under the Small Business Innovation Research (SBIR) and the Small Business Technology Transfer (STTR) programs. Because a lot of these grants involve development of the open VTK and ParaView source code base, the business model becomes a virtuous circle for both Kitware and its customers. “We use those [grants] to develop our tools and toolkit, to add more functionality and make them available to the wider community,” explains Geveci. “We’ve been lucky that a lot of our collaborators understand the value of open source.”

One of Kitware’s more recent efforts is to provide an API for ParaView so that it can be directly coupled to a simulation code and run in the same process space. The goal in coupling is to avoid I/O as much as possible, keeping what would have been post-processing inside the simulation itself. At the same time, doing the visualization in-situ makes better use of the available computational resources. According to Geveci, the nice thing about the ParaView API is that you don’t have to change the internal data structures. You just add ParaView calls in the application to do the initialization, visualization functions and then finalization.

The ParaView library is currently being used with PHASTA, a CFD simulation code that can scale extremely well. Early testing has been performed on an IBM Blue Gene/L supercomputer at the Rensselaer Polytechnic Institute. At some point they would like to run ParaView in this coprocessing model on the Jaguar supercomputer at Oak Ridge National Lab. “Our goal is to scale that functionality all the way to petascale and beyond,” says Geveci.

ParaView is not alone in the open source arena. VisIt was originally developed at Lawrence Livermore National Laboratory under ASCI and is now supported by the DOE’s Scientific Discovery Through Advanced Computing (SciDAC) program. Like ParaView, VisIt is based on the VTK library. VisTrails, 3DSlicer, MayaVi, and OsiriX are other visualization apps developed with VTK, but they tend to be more specialized and are not targeted for large-scale HPC.

CEI’s EnSight is the big competitor to ParaView in the commercial arena, especially in verticals like aerospace, where Kitware is trying to make inroads. Compared to open source visualization, EnSight has been around much longer and is more fully featured, but is less common at the big government labs.

“Government and academic supercomputing sites tend to prefer open source,” notes Geveci. “So you won’t necessarilly see EnSight in many of them. In industry, EnSight may be on more machines than Visit and ParaView. Hopefully, in time, we’ll change that too.”

A future area of interest for Kitware is support for distance visualization. Being able to view the results of a simulation without having to move the data off the supercomputing site is becoming more necessary as datasets grow in size. Along those same lines is the concept of collaborative visualization, enabling multiple researchers at different sites to share results and look at the data together. A lot of this will be enabled by Web-based interfaces, which are slowly edging out the traditional desktop GUI. “The idea is to share data and visualization of data as a larger community,” explains Geveci. “Enabling sharing of data and results through distance visualization and collaboration is very important to us and I think is going to be important to the community at large.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Argonne Supercomputer Accelerates Cancer Prediction Research

August 13, 2019

In the fight against cancer, early prediction, which drastically improves prognoses, is critical. Now, new research by a team from Northwestern University – and accelerated by supercomputing resources at Argonne Nation Read more…

By Oliver Peckham

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Upcoming NSF Cyberinfrastructure Projects to Support ‘Long-Tail’ Users, AI and Big Data

August 5, 2019

The National Science Foundation is well positioned to support national priorities, as new NSF-funded HPC systems to come online in the upcoming year promise to Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This