High-End Visualization the Open Source Way

By Michael Feldman

June 22, 2010

Ultimately supercomputing is a visual endeavor. Turning the so-called “data deluge” into pretty pictures and animations has always been the most straightforward way to extract insight from HPC simulations. But with the size of simulation datasets growing in tandem with the size of supercomputers, visualization has never been more challenging.

Visualization at scale is a problem peculiar to HPC, and therefore solutions are sometimes hard to come by. Generally, users have a choice of buying (or building) a domain-specific solution, purchasing a proprietary general-purpose product, or opting for an open-source solution.

It’s in the latter category that Kitware has made its mark. Founded in 1998, the company built a business around supporting the Visualization Toolkit (VTK), an open-source software library designed for computer graphics, image processing and visualization. VTK was born in 1993 at the GE Research Center in Schenectady, New York, as a software demonstration package that accompanied a visualization textbook, titled “The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics.” Both the software and the book were developed by GE employees Will Schroeder, Ken Martin and Bill Lorensen. After the book was published, interest in the software took off, and Schroeder and Martin went on to start up Kitware to support the burgeoning VTK community. Although Kitware’s original business model centered on visualization consulting services, the company has since expanded, adding a group that specializes in computer vision, one that does scientific data publishing, and another that focuses on software process and development.

But it’s the scientific computing group at Kitware that is aimed squarely at the HPC space. After Kitware was founded, Sandia and Los Alamos National labs contracted the company to help develop visualization tools for the simulations being run on the supercomputers at that time. A lot of the existing tools back then were either completely serial or used the shared-memory model of parallel computing and could not handle the data being produced by these large-scale supercomputer clusters. To fill that need, Kitware extended VTK to support distributed-memory parallel architectures.

As part of that work, they developed ParaView, an open-source visualization app that could be applied across a range of HPC-type applications. The initial funding for the effort was provided by a three-year contract from the DOE’s Accelerated Strategic Computing (ASCI) program, and in 2002, the first release of ParaView was made public. DoD labs, including the Army’s Engineer Research and Development Center (ERDC) and the Army Research Lab (ARL), subsequently kicked in additional money to expand the scope and functionality of the software. ParaView, which itself is based on VTK, has become one of the premier general-purpose applications for HPC visualization.

Today, ParaView can scale up and down across HPC infrastructure, from workstations to the largest supercomputers. When running on a supercomputer or (more commonly) a visualization cluster connected to one, ParaView runs in the client-server mode. In this case, the backend visualization runs in as a distributed parallel application with just user interface on the client side. ParaView has been ported to the Blue Gene architecture, the Cray XT line of supercomputers, Lawrence Livermore’s ASC Purple, as well as all commodity-based Linux and Windows clusters. On the client side, the software supports the usual suspects: Windows, Linux and Mac OS.

The largest users of VTK and ParaView are still in the DoD and DOE communities, which is not surprising when you consider how much of the big supercomputing hardware these two agencies own. Kitware has also worked with a few organizations in Europe, including the French electricity provider, Électricité de France (EDF), considered to be the world’s largest utility company. EDF also contributes to the VTK code base and has built its own tools on top of the library.

ParaView is especially good at working with Finite Element Analysis (FEA) codes, making it well-suited to a variety of applications at DOE and DoD computing centers. At Sandia, it’s being used to visualize the results of CTH, a shock physics code, as well as a number of material sciences applications used for nuclear weapons research. At Los Alamos, ParaView is being used across the open science domains, including cosmology, magnetohydrodynamics, and wind turbine modeling, to name a few. ParaView is also being applied to some of the climate simulations run at the lab, and the visualization results may wind up in the next Intergovernmental Panel on Climate Change (IPCC) report.

Besides the government space, Kitware also targets academia and commercial markets. Industry customers include oil & gas, pharmaceutical, and medical companies. However, because of the economic downturn, the majority of the company’s revenue is currently derived from the federal sector. Even in boom times, though, more than half of Kitware’s revenues come from government contracts.

According to Dr. Berk Geveci, who leads Kitware’s scientific computing group, approximately a quarter of the company’s revenue comes from small business grants issues by government agencies. These fall under the Small Business Innovation Research (SBIR) and the Small Business Technology Transfer (STTR) programs. Because a lot of these grants involve development of the open VTK and ParaView source code base, the business model becomes a virtuous circle for both Kitware and its customers. “We use those [grants] to develop our tools and toolkit, to add more functionality and make them available to the wider community,” explains Geveci. “We’ve been lucky that a lot of our collaborators understand the value of open source.”

One of Kitware’s more recent efforts is to provide an API for ParaView so that it can be directly coupled to a simulation code and run in the same process space. The goal in coupling is to avoid I/O as much as possible, keeping what would have been post-processing inside the simulation itself. At the same time, doing the visualization in-situ makes better use of the available computational resources. According to Geveci, the nice thing about the ParaView API is that you don’t have to change the internal data structures. You just add ParaView calls in the application to do the initialization, visualization functions and then finalization.

The ParaView library is currently being used with PHASTA, a CFD simulation code that can scale extremely well. Early testing has been performed on an IBM Blue Gene/L supercomputer at the Rensselaer Polytechnic Institute. At some point they would like to run ParaView in this coprocessing model on the Jaguar supercomputer at Oak Ridge National Lab. “Our goal is to scale that functionality all the way to petascale and beyond,” says Geveci.

ParaView is not alone in the open source arena. VisIt was originally developed at Lawrence Livermore National Laboratory under ASCI and is now supported by the DOE’s Scientific Discovery Through Advanced Computing (SciDAC) program. Like ParaView, VisIt is based on the VTK library. VisTrails, 3DSlicer, MayaVi, and OsiriX are other visualization apps developed with VTK, but they tend to be more specialized and are not targeted for large-scale HPC.

CEI’s EnSight is the big competitor to ParaView in the commercial arena, especially in verticals like aerospace, where Kitware is trying to make inroads. Compared to open source visualization, EnSight has been around much longer and is more fully featured, but is less common at the big government labs.

“Government and academic supercomputing sites tend to prefer open source,” notes Geveci. “So you won’t necessarilly see EnSight in many of them. In industry, EnSight may be on more machines than Visit and ParaView. Hopefully, in time, we’ll change that too.”

A future area of interest for Kitware is support for distance visualization. Being able to view the results of a simulation without having to move the data off the supercomputing site is becoming more necessary as datasets grow in size. Along those same lines is the concept of collaborative visualization, enabling multiple researchers at different sites to share results and look at the data together. A lot of this will be enabled by Web-based interfaces, which are slowly edging out the traditional desktop GUI. “The idea is to share data and visualization of data as a larger community,” explains Geveci. “Enabling sharing of data and results through distance visualization and collaboration is very important to us and I think is going to be important to the community at large.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them better through the miracle of video..... Team FAU/TUC is a c Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from SC17 chair Bernd Mohr, where he lauded the competition for Read more…

By Dan Olds

Activist Investor Starboard Buys 10.7% Stake in Mellanox; Sale Possible?

November 20, 2017

Starboard Value has reportedly taken a 10.7 percent stake in interconnect specialist Mellanox Technologies, and according to the Wall Street Journal, has urged the company “to improve its margins and stock and explore Read more…

By John Russell

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Installation of Sierra Supercomputer Steams Along at LLNL

November 20, 2017

Sierra, the 125 petaflops (peak) machine based on IBM’s Power9 chip being built at Lawrence Livermore National Laboratory, sometimes takes a back seat to Summit, the ~200 petaflops system being built at Oak Ridge Natio Read more…

By John Russell

Live and in Color, Meet the European Student Cluster Teams

November 21, 2017

The SC17 Student Cluster Competition welcomed two teams from Europe, the German team of FAU/TUC and Team Poland, the pride of Warsaw. Let's get to know them bet Read more…

By Dan Olds

SC17 Student Cluster Kick Off – Guts, Glory, Grep

November 21, 2017

The SC17 Student Cluster Competition started with a well-orchestrated kick-off emceed by Stephen Harrell, the competition chair. It began with a welcome from Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This