High-End Visualization the Open Source Way

By Michael Feldman

June 22, 2010

Ultimately supercomputing is a visual endeavor. Turning the so-called “data deluge” into pretty pictures and animations has always been the most straightforward way to extract insight from HPC simulations. But with the size of simulation datasets growing in tandem with the size of supercomputers, visualization has never been more challenging.

Visualization at scale is a problem peculiar to HPC, and therefore solutions are sometimes hard to come by. Generally, users have a choice of buying (or building) a domain-specific solution, purchasing a proprietary general-purpose product, or opting for an open-source solution.

It’s in the latter category that Kitware has made its mark. Founded in 1998, the company built a business around supporting the Visualization Toolkit (VTK), an open-source software library designed for computer graphics, image processing and visualization. VTK was born in 1993 at the GE Research Center in Schenectady, New York, as a software demonstration package that accompanied a visualization textbook, titled “The Visualization Toolkit: An Object-Oriented Approach to 3D Graphics.” Both the software and the book were developed by GE employees Will Schroeder, Ken Martin and Bill Lorensen. After the book was published, interest in the software took off, and Schroeder and Martin went on to start up Kitware to support the burgeoning VTK community. Although Kitware’s original business model centered on visualization consulting services, the company has since expanded, adding a group that specializes in computer vision, one that does scientific data publishing, and another that focuses on software process and development.

But it’s the scientific computing group at Kitware that is aimed squarely at the HPC space. After Kitware was founded, Sandia and Los Alamos National labs contracted the company to help develop visualization tools for the simulations being run on the supercomputers at that time. A lot of the existing tools back then were either completely serial or used the shared-memory model of parallel computing and could not handle the data being produced by these large-scale supercomputer clusters. To fill that need, Kitware extended VTK to support distributed-memory parallel architectures.

As part of that work, they developed ParaView, an open-source visualization app that could be applied across a range of HPC-type applications. The initial funding for the effort was provided by a three-year contract from the DOE’s Accelerated Strategic Computing (ASCI) program, and in 2002, the first release of ParaView was made public. DoD labs, including the Army’s Engineer Research and Development Center (ERDC) and the Army Research Lab (ARL), subsequently kicked in additional money to expand the scope and functionality of the software. ParaView, which itself is based on VTK, has become one of the premier general-purpose applications for HPC visualization.

Today, ParaView can scale up and down across HPC infrastructure, from workstations to the largest supercomputers. When running on a supercomputer or (more commonly) a visualization cluster connected to one, ParaView runs in the client-server mode. In this case, the backend visualization runs in as a distributed parallel application with just user interface on the client side. ParaView has been ported to the Blue Gene architecture, the Cray XT line of supercomputers, Lawrence Livermore’s ASC Purple, as well as all commodity-based Linux and Windows clusters. On the client side, the software supports the usual suspects: Windows, Linux and Mac OS.

The largest users of VTK and ParaView are still in the DoD and DOE communities, which is not surprising when you consider how much of the big supercomputing hardware these two agencies own. Kitware has also worked with a few organizations in Europe, including the French electricity provider, Électricité de France (EDF), considered to be the world’s largest utility company. EDF also contributes to the VTK code base and has built its own tools on top of the library.

ParaView is especially good at working with Finite Element Analysis (FEA) codes, making it well-suited to a variety of applications at DOE and DoD computing centers. At Sandia, it’s being used to visualize the results of CTH, a shock physics code, as well as a number of material sciences applications used for nuclear weapons research. At Los Alamos, ParaView is being used across the open science domains, including cosmology, magnetohydrodynamics, and wind turbine modeling, to name a few. ParaView is also being applied to some of the climate simulations run at the lab, and the visualization results may wind up in the next Intergovernmental Panel on Climate Change (IPCC) report.

Besides the government space, Kitware also targets academia and commercial markets. Industry customers include oil & gas, pharmaceutical, and medical companies. However, because of the economic downturn, the majority of the company’s revenue is currently derived from the federal sector. Even in boom times, though, more than half of Kitware’s revenues come from government contracts.

According to Dr. Berk Geveci, who leads Kitware’s scientific computing group, approximately a quarter of the company’s revenue comes from small business grants issues by government agencies. These fall under the Small Business Innovation Research (SBIR) and the Small Business Technology Transfer (STTR) programs. Because a lot of these grants involve development of the open VTK and ParaView source code base, the business model becomes a virtuous circle for both Kitware and its customers. “We use those [grants] to develop our tools and toolkit, to add more functionality and make them available to the wider community,” explains Geveci. “We’ve been lucky that a lot of our collaborators understand the value of open source.”

One of Kitware’s more recent efforts is to provide an API for ParaView so that it can be directly coupled to a simulation code and run in the same process space. The goal in coupling is to avoid I/O as much as possible, keeping what would have been post-processing inside the simulation itself. At the same time, doing the visualization in-situ makes better use of the available computational resources. According to Geveci, the nice thing about the ParaView API is that you don’t have to change the internal data structures. You just add ParaView calls in the application to do the initialization, visualization functions and then finalization.

The ParaView library is currently being used with PHASTA, a CFD simulation code that can scale extremely well. Early testing has been performed on an IBM Blue Gene/L supercomputer at the Rensselaer Polytechnic Institute. At some point they would like to run ParaView in this coprocessing model on the Jaguar supercomputer at Oak Ridge National Lab. “Our goal is to scale that functionality all the way to petascale and beyond,” says Geveci.

ParaView is not alone in the open source arena. VisIt was originally developed at Lawrence Livermore National Laboratory under ASCI and is now supported by the DOE’s Scientific Discovery Through Advanced Computing (SciDAC) program. Like ParaView, VisIt is based on the VTK library. VisTrails, 3DSlicer, MayaVi, and OsiriX are other visualization apps developed with VTK, but they tend to be more specialized and are not targeted for large-scale HPC.

CEI’s EnSight is the big competitor to ParaView in the commercial arena, especially in verticals like aerospace, where Kitware is trying to make inroads. Compared to open source visualization, EnSight has been around much longer and is more fully featured, but is less common at the big government labs.

“Government and academic supercomputing sites tend to prefer open source,” notes Geveci. “So you won’t necessarilly see EnSight in many of them. In industry, EnSight may be on more machines than Visit and ParaView. Hopefully, in time, we’ll change that too.”

A future area of interest for Kitware is support for distance visualization. Being able to view the results of a simulation without having to move the data off the supercomputing site is becoming more necessary as datasets grow in size. Along those same lines is the concept of collaborative visualization, enabling multiple researchers at different sites to share results and look at the data together. A lot of this will be enabled by Web-based interfaces, which are slowly edging out the traditional desktop GUI. “The idea is to share data and visualization of data as a larger community,” explains Geveci. “Enabling sharing of data and results through distance visualization and collaboration is very important to us and I think is going to be important to the community at large.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This