GPU Computing II: Where the Truth Lies

By Michael Feldman

June 24, 2010

Following my blog last week about the transition to GPU computing in HPC, I ran into a couple of items that cast the subject in a somewhat different light. One was a paper written by a team of computer science researchers at Georgia Tech titled “On the Limits of GPU Acceleration” (hat tip to NERSC’s John Shalf for bringing it to my attention.) The other item surfaced as a result of an Intel presentation on the relative merits of CPU and GPU architectures for throughput computing, titled “Debunking the 100X GPU vs. CPU Myth.” I think you can guess where this is going.

Turning first to the Georgia Tech paper, authors Richard Vuduc and four colleagues set out to compare CPU and GPU performance on three typical computations in scientific computing: iterative sparse linear solvers, sparse Cholesky factorization, and the fast multipole method. If you don’t know what those are, you can look them up later. Suffice to say that they are representitive of HPC-type algorithms that are neither completely regular, like dense matrix multiplication, or completely irregular, such as graph-intensive computations.

For these codes, Vuduc and company found that a GPU was only equivalent to one or two quad-core Nehalem CPUs performance-wise. And since a single high-end GPU draws nearly as much power as two high-end x86 CPUs, from a performance-per-watt standpoint, the GPU advantage nearly disappears. They also bring up the fact that the additional cost of transfering data between the CPU and the GPU can further narrow the built-in FLOPS advantage enjoyed by the GPU. The authors sum it up thusly:

In particular, we argue that, for a moderately complex class of “irregular” computations, even well-tuned GPGPU accelerated implementations on currently available systems will deliver performance that is, roughly speaking, only comparable to well-tuned code for general-purpose multicore CPU systems, within a roughly comparable power footprint.

The GPU technology chosen was based on NVIDIA’s Tesla C1060/S1070 and GTX285 systems, so the authors do admit that the results may have been very different if they had run these code on the lastest ATI hardware or the new NVIDIA Fermi card. Also, while the researchers made an attempt to tune both the CPU and GPU codes for best performance, they may have missed some important opportunities.

Presumably the Georgia Tech research was unencumbered by commercial agendas. Support for the work came from the National Science Foundation, the Semiconductor Research Corporation, and DARPA. It is worth noting, however, that Intel was also listed as a funder. Hmmm.

Which provides an interesting segue to our second item. At the International Symposium on Computer Architecture in Saint-Malo, France, Intel presented a paper that cast a few more aspersions on the lowly graphics processor. Like the Georgia Tech researcher, the Intel folks did their own CPU vs GPU performance benchmarking, in this case, matching the Intel Core i7 960 with the NVIDIA GTX280. They used 14 different throughput computing kernels and found a mean speedup of 2.5X in favor of the GPU. The GPU did best on the GKJ kernel (collision detection), with a 14-fold performance advantage, and worst on the Sort and Solv kernels, where the CPU actually outran the GPU.

The GPU-loving folks at NVIDIA took this as good news, however, noting the 14-fold performance advantage is quite nice, thank you. In a blog post this week, NVIDIAn Andy Keane writes:

It’s a rare day in the world of technology when a company you compete with stands up at an important conference and declares that your technology is *only* up to 14 times faster than theirs. In fact in all the 26 years I’ve been in this industry, I can’t recall another time I’ve seen a company promote competitive benchmarks that are an order of magnitude slower.

Of course the 14X value was the best kernel result for the GPU, not the average. Intel’s real point was that they couldn’t produce 100-fold increases in performance on the GPU, like NVIDIA claims for some apps. NVIDIA actually freely admits that not all codes will get the two orders of magnitude increase. Keane does, however, list ten examples of real codes where users did record a 100X or better performance boost compared to a CPU implementation. He also points out that for these throughput benchmarks, Intel relied on a previous generation GPU, the GTX280, and doubted that the testers even optimized the GPU code properly — or at all.

So what does it all mean? Well, when it comes to the CPU vs. GPU performance wars, it pays to know who’s runnning the benchmarks — not only in relation to vendor loyalties, but also programming skills, software tools they used, etc. It’s also worth comparing like-to-like as far as processor generations. In this regard, I think the NVIDIA Fermi GPU should be used as sort of a ground floor for all future benchmarks. To my mind, it represents the first GPU that can really be called “general-purpose” without rolling your eyes.

It’s also important to keep in mind the effort required to port these parallel codes to their respective platforms. Skeptics are quick to point out that porting code to a GPU requires a significant up-front investment. But in his blog Keane reminds us that scaling codes on multicore CPUs is not a guaranteed path to delivering performance gains either. As a wise computer scientist once said: “All hardware sucks; all software sucks. Some just suck more than others.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This