GPU Computing II: Where the Truth Lies

By Michael Feldman

June 24, 2010

Following my blog last week about the transition to GPU computing in HPC, I ran into a couple of items that cast the subject in a somewhat different light. One was a paper written by a team of computer science researchers at Georgia Tech titled “On the Limits of GPU Acceleration” (hat tip to NERSC’s John Shalf for bringing it to my attention.) The other item surfaced as a result of an Intel presentation on the relative merits of CPU and GPU architectures for throughput computing, titled “Debunking the 100X GPU vs. CPU Myth.” I think you can guess where this is going.

Turning first to the Georgia Tech paper, authors Richard Vuduc and four colleagues set out to compare CPU and GPU performance on three typical computations in scientific computing: iterative sparse linear solvers, sparse Cholesky factorization, and the fast multipole method. If you don’t know what those are, you can look them up later. Suffice to say that they are representitive of HPC-type algorithms that are neither completely regular, like dense matrix multiplication, or completely irregular, such as graph-intensive computations.

For these codes, Vuduc and company found that a GPU was only equivalent to one or two quad-core Nehalem CPUs performance-wise. And since a single high-end GPU draws nearly as much power as two high-end x86 CPUs, from a performance-per-watt standpoint, the GPU advantage nearly disappears. They also bring up the fact that the additional cost of transfering data between the CPU and the GPU can further narrow the built-in FLOPS advantage enjoyed by the GPU. The authors sum it up thusly:

In particular, we argue that, for a moderately complex class of “irregular” computations, even well-tuned GPGPU accelerated implementations on currently available systems will deliver performance that is, roughly speaking, only comparable to well-tuned code for general-purpose multicore CPU systems, within a roughly comparable power footprint.

The GPU technology chosen was based on NVIDIA’s Tesla C1060/S1070 and GTX285 systems, so the authors do admit that the results may have been very different if they had run these code on the lastest ATI hardware or the new NVIDIA Fermi card. Also, while the researchers made an attempt to tune both the CPU and GPU codes for best performance, they may have missed some important opportunities.

Presumably the Georgia Tech research was unencumbered by commercial agendas. Support for the work came from the National Science Foundation, the Semiconductor Research Corporation, and DARPA. It is worth noting, however, that Intel was also listed as a funder. Hmmm.

Which provides an interesting segue to our second item. At the International Symposium on Computer Architecture in Saint-Malo, France, Intel presented a paper that cast a few more aspersions on the lowly graphics processor. Like the Georgia Tech researcher, the Intel folks did their own CPU vs GPU performance benchmarking, in this case, matching the Intel Core i7 960 with the NVIDIA GTX280. They used 14 different throughput computing kernels and found a mean speedup of 2.5X in favor of the GPU. The GPU did best on the GKJ kernel (collision detection), with a 14-fold performance advantage, and worst on the Sort and Solv kernels, where the CPU actually outran the GPU.

The GPU-loving folks at NVIDIA took this as good news, however, noting the 14-fold performance advantage is quite nice, thank you. In a blog post this week, NVIDIAn Andy Keane writes:

It’s a rare day in the world of technology when a company you compete with stands up at an important conference and declares that your technology is *only* up to 14 times faster than theirs. In fact in all the 26 years I’ve been in this industry, I can’t recall another time I’ve seen a company promote competitive benchmarks that are an order of magnitude slower.

Of course the 14X value was the best kernel result for the GPU, not the average. Intel’s real point was that they couldn’t produce 100-fold increases in performance on the GPU, like NVIDIA claims for some apps. NVIDIA actually freely admits that not all codes will get the two orders of magnitude increase. Keane does, however, list ten examples of real codes where users did record a 100X or better performance boost compared to a CPU implementation. He also points out that for these throughput benchmarks, Intel relied on a previous generation GPU, the GTX280, and doubted that the testers even optimized the GPU code properly — or at all.

So what does it all mean? Well, when it comes to the CPU vs. GPU performance wars, it pays to know who’s runnning the benchmarks — not only in relation to vendor loyalties, but also programming skills, software tools they used, etc. It’s also worth comparing like-to-like as far as processor generations. In this regard, I think the NVIDIA Fermi GPU should be used as sort of a ground floor for all future benchmarks. To my mind, it represents the first GPU that can really be called “general-purpose” without rolling your eyes.

It’s also important to keep in mind the effort required to port these parallel codes to their respective platforms. Skeptics are quick to point out that porting code to a GPU requires a significant up-front investment. But in his blog Keane reminds us that scaling codes on multicore CPUs is not a guaranteed path to delivering performance gains either. As a wise computer scientist once said: “All hardware sucks; all software sucks. Some just suck more than others.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

SDSC Researchers Use Machine Learning to More Accurately Model Water

June 13, 2018

Water – H2O – is a simple but fascinating (and useful) compound. San Diego Supercomputing Center researchers used machine learning techniques to develop models for simulations of water with “unprecedented accuracy. Read more…

By Staff

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

Japan Starts Up 3-Petaflops ‘ATERUI II’ Cray Supercomputer

June 5, 2018

The world's most powerful supercomputer for astrophysical calculations has begun operations in Japan. The announcement comes from the National Astronomical Obse Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This