GPU Computing II: Where the Truth Lies

By Michael Feldman

June 24, 2010

Following my blog last week about the transition to GPU computing in HPC, I ran into a couple of items that cast the subject in a somewhat different light. One was a paper written by a team of computer science researchers at Georgia Tech titled “On the Limits of GPU Acceleration” (hat tip to NERSC’s John Shalf for bringing it to my attention.) The other item surfaced as a result of an Intel presentation on the relative merits of CPU and GPU architectures for throughput computing, titled “Debunking the 100X GPU vs. CPU Myth.” I think you can guess where this is going.

Turning first to the Georgia Tech paper, authors Richard Vuduc and four colleagues set out to compare CPU and GPU performance on three typical computations in scientific computing: iterative sparse linear solvers, sparse Cholesky factorization, and the fast multipole method. If you don’t know what those are, you can look them up later. Suffice to say that they are representitive of HPC-type algorithms that are neither completely regular, like dense matrix multiplication, or completely irregular, such as graph-intensive computations.

For these codes, Vuduc and company found that a GPU was only equivalent to one or two quad-core Nehalem CPUs performance-wise. And since a single high-end GPU draws nearly as much power as two high-end x86 CPUs, from a performance-per-watt standpoint, the GPU advantage nearly disappears. They also bring up the fact that the additional cost of transfering data between the CPU and the GPU can further narrow the built-in FLOPS advantage enjoyed by the GPU. The authors sum it up thusly:

In particular, we argue that, for a moderately complex class of “irregular” computations, even well-tuned GPGPU accelerated implementations on currently available systems will deliver performance that is, roughly speaking, only comparable to well-tuned code for general-purpose multicore CPU systems, within a roughly comparable power footprint.

The GPU technology chosen was based on NVIDIA’s Tesla C1060/S1070 and GTX285 systems, so the authors do admit that the results may have been very different if they had run these code on the lastest ATI hardware or the new NVIDIA Fermi card. Also, while the researchers made an attempt to tune both the CPU and GPU codes for best performance, they may have missed some important opportunities.

Presumably the Georgia Tech research was unencumbered by commercial agendas. Support for the work came from the National Science Foundation, the Semiconductor Research Corporation, and DARPA. It is worth noting, however, that Intel was also listed as a funder. Hmmm.

Which provides an interesting segue to our second item. At the International Symposium on Computer Architecture in Saint-Malo, France, Intel presented a paper that cast a few more aspersions on the lowly graphics processor. Like the Georgia Tech researcher, the Intel folks did their own CPU vs GPU performance benchmarking, in this case, matching the Intel Core i7 960 with the NVIDIA GTX280. They used 14 different throughput computing kernels and found a mean speedup of 2.5X in favor of the GPU. The GPU did best on the GKJ kernel (collision detection), with a 14-fold performance advantage, and worst on the Sort and Solv kernels, where the CPU actually outran the GPU.

The GPU-loving folks at NVIDIA took this as good news, however, noting the 14-fold performance advantage is quite nice, thank you. In a blog post this week, NVIDIAn Andy Keane writes:

It’s a rare day in the world of technology when a company you compete with stands up at an important conference and declares that your technology is *only* up to 14 times faster than theirs. In fact in all the 26 years I’ve been in this industry, I can’t recall another time I’ve seen a company promote competitive benchmarks that are an order of magnitude slower.

Of course the 14X value was the best kernel result for the GPU, not the average. Intel’s real point was that they couldn’t produce 100-fold increases in performance on the GPU, like NVIDIA claims for some apps. NVIDIA actually freely admits that not all codes will get the two orders of magnitude increase. Keane does, however, list ten examples of real codes where users did record a 100X or better performance boost compared to a CPU implementation. He also points out that for these throughput benchmarks, Intel relied on a previous generation GPU, the GTX280, and doubted that the testers even optimized the GPU code properly — or at all.

So what does it all mean? Well, when it comes to the CPU vs. GPU performance wars, it pays to know who’s runnning the benchmarks — not only in relation to vendor loyalties, but also programming skills, software tools they used, etc. It’s also worth comparing like-to-like as far as processor generations. In this regard, I think the NVIDIA Fermi GPU should be used as sort of a ground floor for all future benchmarks. To my mind, it represents the first GPU that can really be called “general-purpose” without rolling your eyes.

It’s also important to keep in mind the effort required to port these parallel codes to their respective platforms. Skeptics are quick to point out that porting code to a GPU requires a significant up-front investment. But in his blog Keane reminds us that scaling codes on multicore CPUs is not a guaranteed path to delivering performance gains either. As a wise computer scientist once said: “All hardware sucks; all software sucks. Some just suck more than others.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This