Migrating Legacy Applications to the Cloud

By Bruce Maches

June 27, 2010

One of the biggest issues that life science CIOs deal with is maintaining their inventory of legacy systems. These types of companies all have large portfolios of applications built up over the years using a variety of technologies and platforms. Many of these applications are very complicated point solutions performing specific functions in the drug or device development process. A good portion of these applications, because they deal with drug data, formulation, chemistry, patient data or manufacturing fall under the auspices of 21 CFR Part 11 and have been validated to meet FDA regulatory guidelines.

The crux of the problem is that life science CIOs have to ensure the continuing performance and availability of these older systems and applications. It is not uncommon to walk into the data center of a large pharmaceutical firm and find systems that are 5-10 years old or older still in use as part of the R&D process. This issue causes a whole slew of different problems:

– The need to maintain obsolete or no longer supported technologies or ones where the vendor no longer exists

– Expensive data center space tied up with older systems

– Keeping the necessary skilled resources knowledgeable on staff to provide support for these systems

– The associated costs of support, maintenance and licensing when budgets are already being squeezed

– Tying up resources that are maintaining these systems that could better be used elsewhere 

– Issues integrating these older systems with newly deployed applications

– Increased power/cooling requirements for older, less efficient systems

– Providing backup/recovery support

Why does this problem exist? There are a number of reasons that life science CIO’s are faced with these issues. Many of these systems were deployed having gone through the time consuming and expensive IQ/OQ/PQ Part 11 compliance process and most companies would rather invest in new systems than spend scarce funds upgrading and re-validating existing systems, other reasons include:

– FDA requirements that all data on any drug product must be kept for several years after the last sale to the public (think Aspirin here)

– Lack of funds to go through an expensive re-validation process  required for any major upgrade of an already validated system

– Multiple company mergers where sufficient funds were never allocated to fully integrate the IT functions

– Scientists who insist on using specific systems they know or are experienced with for their work

– Funding for new projects many times does not include money for retiring the system  being replaced so you end up with both the old and the new

All of these factors come together so that is it just basically easier to implement new systems and keep the existing ones alive. The life science CIO ends up watching his data center and personnel resources slowly being chewed up by the need to maintain older validated applications. 

What can be done to solve this problem? Prior to the advent of cloud computing the life science CIO did not have much in the way of real alternatives to deal with these issues. Now they can have the ability to move these legacy applications into a cloud based environment.

So, the question is, how do you go about getting this done? First of all, this not something that would be undertaken lightly. You would need to have a complete inventory and understanding of your existing legacy application environment. This would be to determine which systems are potential candidates for moving to the cloud, how critical those systems are, and what risks are associated with the move. You would also need an existing cloud strategy for your IT organization along with assessing the security risks, how users would still access those legacy applications, and what type of cloud environment would be appropriate and acceptable from a risk and regulatory standpoint. Once you have determined which systems can be migrated you would need to take the following very high level steps:

– Create a validated machine image (using the IQ process explained in a prior post) of the complete software environment for the platforms to be migrated, this can be re-used for any similarly configured systems

– Use database tools or write programs to extract the data from the legacy application

– Create a documented and validated process for the actual transferring of the data that would fully ensure that there is no data loss or corruption during this process

– Perform the migration itself keeping a record of all logs, check sums, record totals or whatever other check points are being used to ensure proper migration

Migrating legacy applications to the cloud is not something to be done lightly. It takes a real understanding of your existing systems, a disciplined process for the migration itself, and the ability to secure both data and access to these systems once they are migrated.

If you are a life science CIO you would jump at the chance to remove these systems from your on-site application portfolio. Imagine not having to deal with support, hardware issues on obsolete equipment, reducing your data center foot print, power consumption, and backup requirements. You would also free up critical personnel resources to focus on the goals and objectives of your business and isn’t that what the CIO is supposed to be doing?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This