Migrating Legacy Applications to the Cloud

By Bruce Maches

June 27, 2010

One of the biggest issues that life science CIOs deal with is maintaining their inventory of legacy systems. These types of companies all have large portfolios of applications built up over the years using a variety of technologies and platforms. Many of these applications are very complicated point solutions performing specific functions in the drug or device development process. A good portion of these applications, because they deal with drug data, formulation, chemistry, patient data or manufacturing fall under the auspices of 21 CFR Part 11 and have been validated to meet FDA regulatory guidelines.

The crux of the problem is that life science CIOs have to ensure the continuing performance and availability of these older systems and applications. It is not uncommon to walk into the data center of a large pharmaceutical firm and find systems that are 5-10 years old or older still in use as part of the R&D process. This issue causes a whole slew of different problems:

– The need to maintain obsolete or no longer supported technologies or ones where the vendor no longer exists

– Expensive data center space tied up with older systems

– Keeping the necessary skilled resources knowledgeable on staff to provide support for these systems

– The associated costs of support, maintenance and licensing when budgets are already being squeezed

– Tying up resources that are maintaining these systems that could better be used elsewhere 

– Issues integrating these older systems with newly deployed applications

– Increased power/cooling requirements for older, less efficient systems

– Providing backup/recovery support

Why does this problem exist? There are a number of reasons that life science CIO’s are faced with these issues. Many of these systems were deployed having gone through the time consuming and expensive IQ/OQ/PQ Part 11 compliance process and most companies would rather invest in new systems than spend scarce funds upgrading and re-validating existing systems, other reasons include:

– FDA requirements that all data on any drug product must be kept for several years after the last sale to the public (think Aspirin here)

– Lack of funds to go through an expensive re-validation process  required for any major upgrade of an already validated system

– Multiple company mergers where sufficient funds were never allocated to fully integrate the IT functions

– Scientists who insist on using specific systems they know or are experienced with for their work

– Funding for new projects many times does not include money for retiring the system  being replaced so you end up with both the old and the new

All of these factors come together so that is it just basically easier to implement new systems and keep the existing ones alive. The life science CIO ends up watching his data center and personnel resources slowly being chewed up by the need to maintain older validated applications. 

What can be done to solve this problem? Prior to the advent of cloud computing the life science CIO did not have much in the way of real alternatives to deal with these issues. Now they can have the ability to move these legacy applications into a cloud based environment.

So, the question is, how do you go about getting this done? First of all, this not something that would be undertaken lightly. You would need to have a complete inventory and understanding of your existing legacy application environment. This would be to determine which systems are potential candidates for moving to the cloud, how critical those systems are, and what risks are associated with the move. You would also need an existing cloud strategy for your IT organization along with assessing the security risks, how users would still access those legacy applications, and what type of cloud environment would be appropriate and acceptable from a risk and regulatory standpoint. Once you have determined which systems can be migrated you would need to take the following very high level steps:

– Create a validated machine image (using the IQ process explained in a prior post) of the complete software environment for the platforms to be migrated, this can be re-used for any similarly configured systems

– Use database tools or write programs to extract the data from the legacy application

– Create a documented and validated process for the actual transferring of the data that would fully ensure that there is no data loss or corruption during this process

– Perform the migration itself keeping a record of all logs, check sums, record totals or whatever other check points are being used to ensure proper migration

Migrating legacy applications to the cloud is not something to be done lightly. It takes a real understanding of your existing systems, a disciplined process for the migration itself, and the ability to secure both data and access to these systems once they are migrated.

If you are a life science CIO you would jump at the chance to remove these systems from your on-site application portfolio. Imagine not having to deal with support, hardware issues on obsolete equipment, reducing your data center foot print, power consumption, and backup requirements. You would also free up critical personnel resources to focus on the goals and objectives of your business and isn’t that what the CIO is supposed to be doing?

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire