Will Public Clouds Ever Be Suitable for HPC?

By Nicole Hemsoth

June 27, 2010

For those who believe HPC is on the cusp of a revolution in terms of access and usability — especially for non-technical researchers — there are big, ever-lingering questions about how to make a general purpose cloud fit for HPC workloads. The end of most of these discussions comes when the topic of performance emerges because, let’s face it, there are not many appealing features to a large public cloud like Amazon for researchers with very specific compute demands. Having the power on demand is nice, but if the performance is the price to pay then it renders the idea useless.

If it’s a large public cloud we’re talking about — one that is most often used for scientific and large-scale enterprise computing — chances are it’s Amazon’s EC2. There are other public cloud providers, of course, but for the sake of argument, Amazon’s Elastic Compute offering is the poster child for cloud computing and often the first choice — if only because it has been around the longest. From startup cloud providers to big players, Amazon symbolizes the possibilities of cloud for everyone while it epitomizes the problems inherent to the cloud concept as it pertains to HPC.

Not to pick on EC2 here since there are several other public cloud providers to choose from, but it seems that most of the researchers who have made broader use of the public cloud, from large institutions down to individuals working on complex problems, have made this their premium choice. Will it stay this way forever? Probably not, especially since Microsoft and others are chomping at the bit for their share of the cloud movement with a direct focus on the HPC market. In fact, as it becomes clear that there might be benefits for scientific computing in the cloud at the same time that it is becoming glaringly obvious that the cloud-for-everyone will not apply for this specialized subset of users.

The Stagnant Public Cloud

It’s difficult to foster hope for greater use of the public cloud when it is not modified to any significant degree since its standard resources are providing enough to keep this end of the Amazon empire running.

Dr. Dieter Kranzlmuller in the German magazine Computer Woche suggested there are only very limited uses for the public cloud in HPC. “The effective use of a cloud is dependent on the applications. The cloud can be used appropriately when dealing with linear processes and independent, relatively small data volumes. For applications with larger storage requirements or closely coupled parallel processes with high I/O requirements, clouds are often useless.”

Way back in 2008, Edward Walker published a study entitled, “Benchmarking Amazon’s EC2 for High-Performance Scientific Computing” that provided results based on macro and micro comparison points to form a solid theory about the performance gap in the public cloud, even with equivalent processing power. This of course boils down to the MPI and interconnects issue — just as it still does today. The mere act of virtualization renders the cloud almost useless to many scientific HPC clusters, in other words.

According to Walker in his older yet still just-as-relevant report based on the benchmarking study, “the delivery of HPC performance with commercial cloud computing services such as Amazon EC2 is not yet mature…a performance gap exists between performing HPC computations on a traditional scientific cluster and on an EC2 provisioned scientific cluster. This performance gap is seen not only in the MPI performance of distributed-memory parallel programs but also in the single compute node OpenMP performance for shared-memory parallel programs. For cloud computing to be a viable alternative for the computational science community, vendors will need to upgrade their service offerings, especially in the area of high-performance network provisioning to cater to this unique class of users.”

Since the vendor in question here — Amazon — has not upgraded its service offerings, the time has come for others to pick up the slack and create specialized cloud environments that are in tune with the performance demands of HPC users if the cloud vision is to be realized for its cost benefits.

None of this portends well for strict HPC applications in a large public cloud offering like Amazon’s. EC2 and other public clouds designed to run everything from big commercial websites to outsourced large batch jobs might seem appealing on a cursory glance to many, but as William Fellows, analyst at the 451 Group, stated, “The main problem with running HPC tasks on conventional clouds is that conventional clouds are geared toward supporting general-purposes applications and services — short transactional workloads such as web applications and database tasks…theses are heavily dependent on the need to be processed serially and within an infrastructure geared toward supporting inter-process communication.”

In other words, the public cloud is designed for an admirably long list of workloads but HPC in general — not so much. But really, when you get right down to it, why should EC2 change its style to fit the needs of scientific users in the first place when it is doing just fine serving the needs of mainstream users? After all, other companies who already have some degree of HPC supremacy are making headway as they are better positioned to tailor their approach to coaxing researchers on to their clouds — in whatever form they’ve devised.

Bridges Across the Performance Chasm

When so many think about the cloud in general, the first thought is about large-scale cloud providers like Amazon, but the fact is, there are an increasing number of choices that remove the performance gap caused by virtualization or that have clouds that are tailored to the performance-driven needs of HPC users.

IBM, Microsoft, SGI, Penguin, Cycle and a handful of others that do not work directly to manage their clients’ push to the public cloud via a layer of cloud management software are doing so in part because they’ve realized that there is no broad appeal for true, traditional HPC users to move to EC2. They realize that the environment needs to be customized, that the performance is the most critical factor in gaining converts — and most importantly, that there is no public cloud that can beat the power of a cluster. So in a manner that screams “grid” they are renting specialized clusters that are specifically designed for HPC users.

In an effort to overcome the performance gap yet still provide users with the freedom of owning and managing their own clusters, Penguin On-Demand (POD) and others, including Cycle Computing, are taking the concept of the cloud for HPC and making it more attractive to HPC users by eliminating the virtualization and providing customized servers. This missing layer of virtualization adds some complication to the term “cloud” but it is a logical step for researchers who are attracted to the cost benefits of avoiding the expense of a cluster investment. Since many HPC users have found that large public clouds, most notably Amazon’s EC2, do not offer the service levels they depend on, it is reasonable to predict that there will be a host of new upstarts that seek to bring dedicated servers to researchers in an on-demand fashion versus creating a complex management layer that is tied to the public cloud.

This is not to say that EC2 is not being used with some success, but most often these are jobs are that are not necessarily HPC-like. As Kathy Yelick, director of NERSC, noted in a recent interview about current developments in the Magellan cloud, “there’s a part of the workload in scientific computing that’s well-suited to the cloud, but it’s not the HPC end, it’s really the bulk aggregate serial workload that often comes up in scientific computing, but that is not really the traditional arena of high-performance computing.”

If existing cloud providers with their eyes on the HPC market can better tailor their solutions to meet the broader range of HPC application needs with a distinct focus on performance, it stands to reason that the world of the public cloud will be out of reach to Amazon and other general purpose cloud providers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This