Will Public Clouds Ever Be Suitable for HPC?

By Nicole Hemsoth

June 27, 2010

For those who believe HPC is on the cusp of a revolution in terms of access and usability — especially for non-technical researchers — there are big, ever-lingering questions about how to make a general purpose cloud fit for HPC workloads. The end of most of these discussions comes when the topic of performance emerges because, let’s face it, there are not many appealing features to a large public cloud like Amazon for researchers with very specific compute demands. Having the power on demand is nice, but if the performance is the price to pay then it renders the idea useless.

If it’s a large public cloud we’re talking about — one that is most often used for scientific and large-scale enterprise computing — chances are it’s Amazon’s EC2. There are other public cloud providers, of course, but for the sake of argument, Amazon’s Elastic Compute offering is the poster child for cloud computing and often the first choice — if only because it has been around the longest. From startup cloud providers to big players, Amazon symbolizes the possibilities of cloud for everyone while it epitomizes the problems inherent to the cloud concept as it pertains to HPC.

Not to pick on EC2 here since there are several other public cloud providers to choose from, but it seems that most of the researchers who have made broader use of the public cloud, from large institutions down to individuals working on complex problems, have made this their premium choice. Will it stay this way forever? Probably not, especially since Microsoft and others are chomping at the bit for their share of the cloud movement with a direct focus on the HPC market. In fact, as it becomes clear that there might be benefits for scientific computing in the cloud at the same time that it is becoming glaringly obvious that the cloud-for-everyone will not apply for this specialized subset of users.

The Stagnant Public Cloud

It’s difficult to foster hope for greater use of the public cloud when it is not modified to any significant degree since its standard resources are providing enough to keep this end of the Amazon empire running.

Dr. Dieter Kranzlmuller in the German magazine Computer Woche suggested there are only very limited uses for the public cloud in HPC. “The effective use of a cloud is dependent on the applications. The cloud can be used appropriately when dealing with linear processes and independent, relatively small data volumes. For applications with larger storage requirements or closely coupled parallel processes with high I/O requirements, clouds are often useless.”

Way back in 2008, Edward Walker published a study entitled, “Benchmarking Amazon’s EC2 for High-Performance Scientific Computing” that provided results based on macro and micro comparison points to form a solid theory about the performance gap in the public cloud, even with equivalent processing power. This of course boils down to the MPI and interconnects issue — just as it still does today. The mere act of virtualization renders the cloud almost useless to many scientific HPC clusters, in other words.

According to Walker in his older yet still just-as-relevant report based on the benchmarking study, “the delivery of HPC performance with commercial cloud computing services such as Amazon EC2 is not yet mature…a performance gap exists between performing HPC computations on a traditional scientific cluster and on an EC2 provisioned scientific cluster. This performance gap is seen not only in the MPI performance of distributed-memory parallel programs but also in the single compute node OpenMP performance for shared-memory parallel programs. For cloud computing to be a viable alternative for the computational science community, vendors will need to upgrade their service offerings, especially in the area of high-performance network provisioning to cater to this unique class of users.”

Since the vendor in question here — Amazon — has not upgraded its service offerings, the time has come for others to pick up the slack and create specialized cloud environments that are in tune with the performance demands of HPC users if the cloud vision is to be realized for its cost benefits.

None of this portends well for strict HPC applications in a large public cloud offering like Amazon’s. EC2 and other public clouds designed to run everything from big commercial websites to outsourced large batch jobs might seem appealing on a cursory glance to many, but as William Fellows, analyst at the 451 Group, stated, “The main problem with running HPC tasks on conventional clouds is that conventional clouds are geared toward supporting general-purposes applications and services — short transactional workloads such as web applications and database tasks…theses are heavily dependent on the need to be processed serially and within an infrastructure geared toward supporting inter-process communication.”

In other words, the public cloud is designed for an admirably long list of workloads but HPC in general — not so much. But really, when you get right down to it, why should EC2 change its style to fit the needs of scientific users in the first place when it is doing just fine serving the needs of mainstream users? After all, other companies who already have some degree of HPC supremacy are making headway as they are better positioned to tailor their approach to coaxing researchers on to their clouds — in whatever form they’ve devised.

Bridges Across the Performance Chasm

When so many think about the cloud in general, the first thought is about large-scale cloud providers like Amazon, but the fact is, there are an increasing number of choices that remove the performance gap caused by virtualization or that have clouds that are tailored to the performance-driven needs of HPC users.

IBM, Microsoft, SGI, Penguin, Cycle and a handful of others that do not work directly to manage their clients’ push to the public cloud via a layer of cloud management software are doing so in part because they’ve realized that there is no broad appeal for true, traditional HPC users to move to EC2. They realize that the environment needs to be customized, that the performance is the most critical factor in gaining converts — and most importantly, that there is no public cloud that can beat the power of a cluster. So in a manner that screams “grid” they are renting specialized clusters that are specifically designed for HPC users.

In an effort to overcome the performance gap yet still provide users with the freedom of owning and managing their own clusters, Penguin On-Demand (POD) and others, including Cycle Computing, are taking the concept of the cloud for HPC and making it more attractive to HPC users by eliminating the virtualization and providing customized servers. This missing layer of virtualization adds some complication to the term “cloud” but it is a logical step for researchers who are attracted to the cost benefits of avoiding the expense of a cluster investment. Since many HPC users have found that large public clouds, most notably Amazon’s EC2, do not offer the service levels they depend on, it is reasonable to predict that there will be a host of new upstarts that seek to bring dedicated servers to researchers in an on-demand fashion versus creating a complex management layer that is tied to the public cloud.

This is not to say that EC2 is not being used with some success, but most often these are jobs are that are not necessarily HPC-like. As Kathy Yelick, director of NERSC, noted in a recent interview about current developments in the Magellan cloud, “there’s a part of the workload in scientific computing that’s well-suited to the cloud, but it’s not the HPC end, it’s really the bulk aggregate serial workload that often comes up in scientific computing, but that is not really the traditional arena of high-performance computing.”

If existing cloud providers with their eyes on the HPC market can better tailor their solutions to meet the broader range of HPC application needs with a distinct focus on performance, it stands to reason that the world of the public cloud will be out of reach to Amazon and other general purpose cloud providers.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This