Quantum Computer Simulation: New World Record on JUGENE

By Markus Henkel

June 28, 2010

The civil engineer Konrad Zuse was born in Berlin exactly 100 years ago. In 1941, he built the world’s first computer. And thanks to his pioneering work, the scientists at the Jülich Supercomputing Center have now succeeded in setting a world record by simulating the largest quantum computer system with 42 qubits. As yet, only small prototypes of quantum computers exist in laboratories, with a capacity of a few bits. This is now going to change.

Compared to the so-called quantum computers, today’s supercomputers would simply look old. A new project is aiming to catapult these impressive machines out of the realm of the hypothetical and into reality, or at least to raise the hope that such computers will not just be sketches on paper.

Low value, large effect

To understand the extent of the accomplishment, you have to grasp the underlying principle of a quantum system. “The computing power of a quantum computer grows exponentially with its size,” says Prof. Dr. Kristel Michielsen from the Jülich Supercomputing Center, and who heads the Institute for Advanced Simulation. “If a quantum computer is expanded by just one single computer bit, its computing power is immediately doubled due to the laws of quantum mechanics on which it is based.”

By contrast, the computing power of a classical computer only grows linearly with its components. Ten percent more transistors only means ten percent more performance, at best.

The qubit is still the smallest unit for quantum computers; however, they offer quite different possibilities. While the traditional 8-bit byte can represent 256 different values, quantum bytes have over 65,535 independent states. For computational operations, quantum computers use atoms and subatomic particles as transmission units. They are both the memory and the executing computational unit. This property would allow such a computer to perform computational operations simultaneously, to take on highly scientific tasks, and to control the cand decryption of data streams.

This last function is already no longer a secret in the world of cryptography. Since Phil Zimmermann placed his PGP encryption on the Internet with free access for everyone in 1991, anyone can easily encrypt their data stream. This cryptographic undertaking is naturally a thorn in the side of intelligence agencies because terrorists are also able to use it.

JUGENE: Europe’s fastest supercomputer
JUGENE supercomputer
Of course, if you want to simulate a quantum computer using a traditional computer, you soon run up against limitations. For a 42-qubit simulation, you need machines like the Jülich supercomputer. JUGENE is the fastest computer in Europe with almost 300,000 processors and a computing power of one quadrillion floating point operations per second. One billion people would each have to perform one million calculations per second on a calculator to get anywhere near as fast as that. On this machine, scientists succeeded in running Shor’s algorithm, one of the most common test applications for quantum computers, with 42 computer bits factorizing 15,707 into 113×139. “The simulation can now factorize numbers that are about a thousand times larger than those previously possible with experimental quantum computers,” says Michielsen proudly.

The simulation was built by enhancing existing software. When so many processors work together, it may easily be the case that threads are waiting for each other, leading to performance loss. The Jülich software is optimized to allow thousands of processors to work together seamlessly. Codes like this are able to scale almost perfectly. Scaling is the term computer scientists use to describe the property of software such that it is able to convert processors into computational performance in a linear manner.

Jülich is also at the heart of the QPACE project (QCD Parallel Computing on the Cell). In the future, the supercomputer center will come into even “greater consideration” for larger projects involving several research institutes. An international consortium consisting of six German and Italian universities and research centers plans to calculate simulations in quantum chromodynamics (QCD), a field of elementary physics. QCD describes how protons are built up of quarks and gluons. The work in this field can also help increase the understanding of the the fundamental forces of the universe. Here too, IBM, or more precisely IBM’s research and development center in Böblingen, Germany, is also supporting the prototype of a research computer that can handle such simulations.

Jülich’s red carpet
 
The QPACE concept consists of a network of programmable components, the so-called “field programmable gate arrays” (FPGAs) that connect processors to a powerful, scalable research computer. The prototype is intended to reach a maximum performance of up to 200 teraflops. Due to the scalability of the network employed, it is theoretically possible to increase the performance up into the petaflop range.

But quantum physics is not only an issue at Jülich. Quantum research has long since been an international business. It was the Danes who, as it were, rolled out Jülich’s red carpet in 2008. Dr. Henrik Ingerslev Jørgensen from the Niels Bohr Institute in Copenhagen succeeded in getting qubits to interact with each other. His results gave the first glimpse into understanding the interaction of two electrons lying next to each other in carbon nanotubes, which are tiny tubes made up of graphite layers.

A glance into the future
 
“Quantum computers are still a fascinating vision – nothing more,” says Michael Malms, head of High Performance Computing at the German IBM research and development center in Böblingen. “But if we look at the technical evolution that has been successful in a relatively short time in the area of high performance computing and project that into the future, then we cannot exclude the possibility that quantum computers too will one day become a reality.”

No doubt Konrad Zuse would be amazed if he were able to look at the cutting edge of computing research today. And it’s not just quantum computing. Scientists at the Weizmann Institute of Science in Rehovot in Israel are conducting research into the possibility of using synthetic genetic “snippets” as software. Enzymes that read, split and join DNA form the hardware. Then based on the aggregate number of such “computers,” they are able to parallelize computations. About three trillion such molecular computers are packed into a drop of water, and since they work simultaneously, they can theoretically perform 66 billion operations per drop. Zuse would have loved to hear this “pitter-pattering” of computing.

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at info@laengsynt.de or visit the Web site: http://laengsynt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource managed by the institution’s Advanced Center for Computing and C Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This