Quantum Computer Simulation: New World Record on JUGENE

By Markus Henkel

June 28, 2010

The civil engineer Konrad Zuse was born in Berlin exactly 100 years ago. In 1941, he built the world’s first computer. And thanks to his pioneering work, the scientists at the Jülich Supercomputing Center have now succeeded in setting a world record by simulating the largest quantum computer system with 42 qubits. As yet, only small prototypes of quantum computers exist in laboratories, with a capacity of a few bits. This is now going to change.

Compared to the so-called quantum computers, today’s supercomputers would simply look old. A new project is aiming to catapult these impressive machines out of the realm of the hypothetical and into reality, or at least to raise the hope that such computers will not just be sketches on paper.

Low value, large effect

To understand the extent of the accomplishment, you have to grasp the underlying principle of a quantum system. “The computing power of a quantum computer grows exponentially with its size,” says Prof. Dr. Kristel Michielsen from the Jülich Supercomputing Center, and who heads the Institute for Advanced Simulation. “If a quantum computer is expanded by just one single computer bit, its computing power is immediately doubled due to the laws of quantum mechanics on which it is based.”

By contrast, the computing power of a classical computer only grows linearly with its components. Ten percent more transistors only means ten percent more performance, at best.

The qubit is still the smallest unit for quantum computers; however, they offer quite different possibilities. While the traditional 8-bit byte can represent 256 different values, quantum bytes have over 65,535 independent states. For computational operations, quantum computers use atoms and subatomic particles as transmission units. They are both the memory and the executing computational unit. This property would allow such a computer to perform computational operations simultaneously, to take on highly scientific tasks, and to control the cand decryption of data streams.

This last function is already no longer a secret in the world of cryptography. Since Phil Zimmermann placed his PGP encryption on the Internet with free access for everyone in 1991, anyone can easily encrypt their data stream. This cryptographic undertaking is naturally a thorn in the side of intelligence agencies because terrorists are also able to use it.

JUGENE: Europe’s fastest supercomputer
JUGENE supercomputer
Of course, if you want to simulate a quantum computer using a traditional computer, you soon run up against limitations. For a 42-qubit simulation, you need machines like the Jülich supercomputer. JUGENE is the fastest computer in Europe with almost 300,000 processors and a computing power of one quadrillion floating point operations per second. One billion people would each have to perform one million calculations per second on a calculator to get anywhere near as fast as that. On this machine, scientists succeeded in running Shor’s algorithm, one of the most common test applications for quantum computers, with 42 computer bits factorizing 15,707 into 113×139. “The simulation can now factorize numbers that are about a thousand times larger than those previously possible with experimental quantum computers,” says Michielsen proudly.

The simulation was built by enhancing existing software. When so many processors work together, it may easily be the case that threads are waiting for each other, leading to performance loss. The Jülich software is optimized to allow thousands of processors to work together seamlessly. Codes like this are able to scale almost perfectly. Scaling is the term computer scientists use to describe the property of software such that it is able to convert processors into computational performance in a linear manner.

Jülich is also at the heart of the QPACE project (QCD Parallel Computing on the Cell). In the future, the supercomputer center will come into even “greater consideration” for larger projects involving several research institutes. An international consortium consisting of six German and Italian universities and research centers plans to calculate simulations in quantum chromodynamics (QCD), a field of elementary physics. QCD describes how protons are built up of quarks and gluons. The work in this field can also help increase the understanding of the the fundamental forces of the universe. Here too, IBM, or more precisely IBM’s research and development center in Böblingen, Germany, is also supporting the prototype of a research computer that can handle such simulations.

Jülich’s red carpet
 
The QPACE concept consists of a network of programmable components, the so-called “field programmable gate arrays” (FPGAs) that connect processors to a powerful, scalable research computer. The prototype is intended to reach a maximum performance of up to 200 teraflops. Due to the scalability of the network employed, it is theoretically possible to increase the performance up into the petaflop range.

But quantum physics is not only an issue at Jülich. Quantum research has long since been an international business. It was the Danes who, as it were, rolled out Jülich’s red carpet in 2008. Dr. Henrik Ingerslev Jørgensen from the Niels Bohr Institute in Copenhagen succeeded in getting qubits to interact with each other. His results gave the first glimpse into understanding the interaction of two electrons lying next to each other in carbon nanotubes, which are tiny tubes made up of graphite layers.

A glance into the future
 
“Quantum computers are still a fascinating vision – nothing more,” says Michael Malms, head of High Performance Computing at the German IBM research and development center in Böblingen. “But if we look at the technical evolution that has been successful in a relatively short time in the area of high performance computing and project that into the future, then we cannot exclude the possibility that quantum computers too will one day become a reality.”

No doubt Konrad Zuse would be amazed if he were able to look at the cutting edge of computing research today. And it’s not just quantum computing. Scientists at the Weizmann Institute of Science in Rehovot in Israel are conducting research into the possibility of using synthetic genetic “snippets” as software. Enzymes that read, split and join DNA form the hardware. Then based on the aggregate number of such “computers,” they are able to parallelize computations. About three trillion such molecular computers are packed into a drop of water, and since they work simultaneously, they can theoretically perform 66 billion operations per drop. Zuse would have loved to hear this “pitter-pattering” of computing.

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at info@laengsynt.de or visit the Web site: http://laengsynt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This