Quantum Computer Simulation: New World Record on JUGENE

By Markus Henkel

June 28, 2010

The civil engineer Konrad Zuse was born in Berlin exactly 100 years ago. In 1941, he built the world’s first computer. And thanks to his pioneering work, the scientists at the Jülich Supercomputing Center have now succeeded in setting a world record by simulating the largest quantum computer system with 42 qubits. As yet, only small prototypes of quantum computers exist in laboratories, with a capacity of a few bits. This is now going to change.

Compared to the so-called quantum computers, today’s supercomputers would simply look old. A new project is aiming to catapult these impressive machines out of the realm of the hypothetical and into reality, or at least to raise the hope that such computers will not just be sketches on paper.

Low value, large effect

To understand the extent of the accomplishment, you have to grasp the underlying principle of a quantum system. “The computing power of a quantum computer grows exponentially with its size,” says Prof. Dr. Kristel Michielsen from the Jülich Supercomputing Center, and who heads the Institute for Advanced Simulation. “If a quantum computer is expanded by just one single computer bit, its computing power is immediately doubled due to the laws of quantum mechanics on which it is based.”

By contrast, the computing power of a classical computer only grows linearly with its components. Ten percent more transistors only means ten percent more performance, at best.

The qubit is still the smallest unit for quantum computers; however, they offer quite different possibilities. While the traditional 8-bit byte can represent 256 different values, quantum bytes have over 65,535 independent states. For computational operations, quantum computers use atoms and subatomic particles as transmission units. They are both the memory and the executing computational unit. This property would allow such a computer to perform computational operations simultaneously, to take on highly scientific tasks, and to control the cand decryption of data streams.

This last function is already no longer a secret in the world of cryptography. Since Phil Zimmermann placed his PGP encryption on the Internet with free access for everyone in 1991, anyone can easily encrypt their data stream. This cryptographic undertaking is naturally a thorn in the side of intelligence agencies because terrorists are also able to use it.

JUGENE: Europe’s fastest supercomputer
JUGENE supercomputer
Of course, if you want to simulate a quantum computer using a traditional computer, you soon run up against limitations. For a 42-qubit simulation, you need machines like the Jülich supercomputer. JUGENE is the fastest computer in Europe with almost 300,000 processors and a computing power of one quadrillion floating point operations per second. One billion people would each have to perform one million calculations per second on a calculator to get anywhere near as fast as that. On this machine, scientists succeeded in running Shor’s algorithm, one of the most common test applications for quantum computers, with 42 computer bits factorizing 15,707 into 113×139. “The simulation can now factorize numbers that are about a thousand times larger than those previously possible with experimental quantum computers,” says Michielsen proudly.

The simulation was built by enhancing existing software. When so many processors work together, it may easily be the case that threads are waiting for each other, leading to performance loss. The Jülich software is optimized to allow thousands of processors to work together seamlessly. Codes like this are able to scale almost perfectly. Scaling is the term computer scientists use to describe the property of software such that it is able to convert processors into computational performance in a linear manner.

Jülich is also at the heart of the QPACE project (QCD Parallel Computing on the Cell). In the future, the supercomputer center will come into even “greater consideration” for larger projects involving several research institutes. An international consortium consisting of six German and Italian universities and research centers plans to calculate simulations in quantum chromodynamics (QCD), a field of elementary physics. QCD describes how protons are built up of quarks and gluons. The work in this field can also help increase the understanding of the the fundamental forces of the universe. Here too, IBM, or more precisely IBM’s research and development center in Böblingen, Germany, is also supporting the prototype of a research computer that can handle such simulations.

Jülich’s red carpet
 
The QPACE concept consists of a network of programmable components, the so-called “field programmable gate arrays” (FPGAs) that connect processors to a powerful, scalable research computer. The prototype is intended to reach a maximum performance of up to 200 teraflops. Due to the scalability of the network employed, it is theoretically possible to increase the performance up into the petaflop range.

But quantum physics is not only an issue at Jülich. Quantum research has long since been an international business. It was the Danes who, as it were, rolled out Jülich’s red carpet in 2008. Dr. Henrik Ingerslev Jørgensen from the Niels Bohr Institute in Copenhagen succeeded in getting qubits to interact with each other. His results gave the first glimpse into understanding the interaction of two electrons lying next to each other in carbon nanotubes, which are tiny tubes made up of graphite layers.

A glance into the future
 
“Quantum computers are still a fascinating vision – nothing more,” says Michael Malms, head of High Performance Computing at the German IBM research and development center in Böblingen. “But if we look at the technical evolution that has been successful in a relatively short time in the area of high performance computing and project that into the future, then we cannot exclude the possibility that quantum computers too will one day become a reality.”

No doubt Konrad Zuse would be amazed if he were able to look at the cutting edge of computing research today. And it’s not just quantum computing. Scientists at the Weizmann Institute of Science in Rehovot in Israel are conducting research into the possibility of using synthetic genetic “snippets” as software. Enzymes that read, split and join DNA form the hardware. Then based on the aggregate number of such “computers,” they are able to parallelize computations. About three trillion such molecular computers are packed into a drop of water, and since they work simultaneously, they can theoretically perform 66 billion operations per drop. Zuse would have loved to hear this “pitter-pattering” of computing.

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at info@laengsynt.de or visit the Web site: http://laengsynt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This