Quantum Computer Simulation: New World Record on JUGENE

By Markus Henkel

June 28, 2010

The civil engineer Konrad Zuse was born in Berlin exactly 100 years ago. In 1941, he built the world’s first computer. And thanks to his pioneering work, the scientists at the Jülich Supercomputing Center have now succeeded in setting a world record by simulating the largest quantum computer system with 42 qubits. As yet, only small prototypes of quantum computers exist in laboratories, with a capacity of a few bits. This is now going to change.

Compared to the so-called quantum computers, today’s supercomputers would simply look old. A new project is aiming to catapult these impressive machines out of the realm of the hypothetical and into reality, or at least to raise the hope that such computers will not just be sketches on paper.

Low value, large effect

To understand the extent of the accomplishment, you have to grasp the underlying principle of a quantum system. “The computing power of a quantum computer grows exponentially with its size,” says Prof. Dr. Kristel Michielsen from the Jülich Supercomputing Center, and who heads the Institute for Advanced Simulation. “If a quantum computer is expanded by just one single computer bit, its computing power is immediately doubled due to the laws of quantum mechanics on which it is based.”

By contrast, the computing power of a classical computer only grows linearly with its components. Ten percent more transistors only means ten percent more performance, at best.

The qubit is still the smallest unit for quantum computers; however, they offer quite different possibilities. While the traditional 8-bit byte can represent 256 different values, quantum bytes have over 65,535 independent states. For computational operations, quantum computers use atoms and subatomic particles as transmission units. They are both the memory and the executing computational unit. This property would allow such a computer to perform computational operations simultaneously, to take on highly scientific tasks, and to control the cand decryption of data streams.

This last function is already no longer a secret in the world of cryptography. Since Phil Zimmermann placed his PGP encryption on the Internet with free access for everyone in 1991, anyone can easily encrypt their data stream. This cryptographic undertaking is naturally a thorn in the side of intelligence agencies because terrorists are also able to use it.

JUGENE: Europe’s fastest supercomputer
JUGENE supercomputer
Of course, if you want to simulate a quantum computer using a traditional computer, you soon run up against limitations. For a 42-qubit simulation, you need machines like the Jülich supercomputer. JUGENE is the fastest computer in Europe with almost 300,000 processors and a computing power of one quadrillion floating point operations per second. One billion people would each have to perform one million calculations per second on a calculator to get anywhere near as fast as that. On this machine, scientists succeeded in running Shor’s algorithm, one of the most common test applications for quantum computers, with 42 computer bits factorizing 15,707 into 113×139. “The simulation can now factorize numbers that are about a thousand times larger than those previously possible with experimental quantum computers,” says Michielsen proudly.

The simulation was built by enhancing existing software. When so many processors work together, it may easily be the case that threads are waiting for each other, leading to performance loss. The Jülich software is optimized to allow thousands of processors to work together seamlessly. Codes like this are able to scale almost perfectly. Scaling is the term computer scientists use to describe the property of software such that it is able to convert processors into computational performance in a linear manner.

Jülich is also at the heart of the QPACE project (QCD Parallel Computing on the Cell). In the future, the supercomputer center will come into even “greater consideration” for larger projects involving several research institutes. An international consortium consisting of six German and Italian universities and research centers plans to calculate simulations in quantum chromodynamics (QCD), a field of elementary physics. QCD describes how protons are built up of quarks and gluons. The work in this field can also help increase the understanding of the the fundamental forces of the universe. Here too, IBM, or more precisely IBM’s research and development center in Böblingen, Germany, is also supporting the prototype of a research computer that can handle such simulations.

Jülich’s red carpet
 
The QPACE concept consists of a network of programmable components, the so-called “field programmable gate arrays” (FPGAs) that connect processors to a powerful, scalable research computer. The prototype is intended to reach a maximum performance of up to 200 teraflops. Due to the scalability of the network employed, it is theoretically possible to increase the performance up into the petaflop range.

But quantum physics is not only an issue at Jülich. Quantum research has long since been an international business. It was the Danes who, as it were, rolled out Jülich’s red carpet in 2008. Dr. Henrik Ingerslev Jørgensen from the Niels Bohr Institute in Copenhagen succeeded in getting qubits to interact with each other. His results gave the first glimpse into understanding the interaction of two electrons lying next to each other in carbon nanotubes, which are tiny tubes made up of graphite layers.

A glance into the future
 
“Quantum computers are still a fascinating vision – nothing more,” says Michael Malms, head of High Performance Computing at the German IBM research and development center in Böblingen. “But if we look at the technical evolution that has been successful in a relatively short time in the area of high performance computing and project that into the future, then we cannot exclude the possibility that quantum computers too will one day become a reality.”

No doubt Konrad Zuse would be amazed if he were able to look at the cutting edge of computing research today. And it’s not just quantum computing. Scientists at the Weizmann Institute of Science in Rehovot in Israel are conducting research into the possibility of using synthetic genetic “snippets” as software. Enzymes that read, split and join DNA form the hardware. Then based on the aggregate number of such “computers,” they are able to parallelize computations. About three trillion such molecular computers are packed into a drop of water, and since they work simultaneously, they can theoretically perform 66 billion operations per drop. Zuse would have loved to hear this “pitter-pattering” of computing.

About the Author

Markus Henkel is a geodesist, science writer and lives in Hamburg, Germany. He writes about supercomputing, environmental protection and clinical medicine. For more information, email him at [email protected] or visit the Web site: http://laengsynt.de.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips are available off the shelf, a concern raised at many recent Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announced its second fund targeting €200 million. The very idea th Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. In a way, Nvidia is the new Intel IDF, the hottest chip show Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Google Making Major Changes in AI Operations to Pull in Cash from Gemini

April 4, 2024

Over the last week, Google has made some under-the-radar changes, including appointing a new leader for AI development, which suggests the company is taking its Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire