Kudos for CUDA

By Dr. Vincent Natoli

July 6, 2010

It’s been almost three years since GPU computing broke into the mainstream of HPC with the introduction of NVIDIA’s CUDA API in September 2007. Adoption of the technology since then has proceeded at a surprisingly strong and steady pace. Many organizations that began with small pilot projects a year or two ago have moved on to enterprise deployment, and GPU accelerated machines are now represented on the TOP500 list starting at position two. The relatively-rapid adoption of CUDA by a community not known for the rapid adoption of much of anything is a noteworthy signal. Contrary to the accepted wisdom that GPU computing is more difficult, I believe its success thus far signals that it is no more complicated than good CPU programming. Further, it more clearly and succinctly expresses the parallelism of a large class of problems leading to code that is easier to maintain, more scalable and better positioned to map to future many-core architectures.

The continued growth of CUDA contrasts sharply with the graveyard of abandoned languages introduced to the HPC market over the last 20 to 25 years. Its success can largely be attributed to i) support from a major corporate backer as opposed to a consortium, ii) the maturity of its compilers iii) adherence to a C syntax easily recognized by developers and iv) a more ephemeral feature that can best be described as elegance or simplicity. Physicists and Mathematicians, often use the word “elegant” as a high compliment to describe particularly appealing solutions or equations that neatly represent complex physical phenomena; where the language of mathematics succinctly and…well…elegantly describes and captures symmetry and physics. CUDA is an elegant solution to the problem of representing parallelism in algorithms, not all algorithms, but enough to matter. It seems to resonate in some way with the way we think and code, allowing an easier more natural expression of parallelism beyond the task-level.

HPC developers writing parallel code today have two enterprise options i) traditional multicore platforms built on CPUs from Intel/AMD and ii) platforms accelerated with GPGPU options from NVIDIA and AMD/ATI. Developing performant, scalable parallel code for multicore architectures is still non-trivial and involves a multi-level programming model that includes inter-node parallelism handled with MPI, intra-node parallelism with MPI, OpenMP or pthreads, and register level parallelism expressed via Streaming SIMD Instructions (SSE). The expression of parallelism in this multi-level model is often verbose and messy, obscuring the underlying algorithm. The developer is often left feeling as though he or she is shoehorning in the parallelism.

The CUDA programming model presents a different, in some ways refreshing, approach to expressing parallelism. The MPI, OpenMP and SSE trio evolved from a world centered on serial processing. CUDA, by contrast, arises from a decidedly parallel world, where thousands of simultaneous threads are managed as the norm. The programming model forces the developer to identify the irreducible level of parallelism in his or her problem. In a world that is rapidly moving to manycore, not multicore, this seems to be a better, more intuitive and extensible way to think about our problems.

CUDA is a programming language with constructs that are designed for the natural expression of data-level parallelism. It’s not hard to understand expressibility in languages and the idea that some concepts are more easily stated in specific languages. Computer scientists do this all the time as they create optimal structures to represent their data. DNA base pairs, for example, are neatly and compactly expressed as a sequence of 2-bit data fields much better than a simple minded ASCII representation. Our Italian exchange student was fond of pointing out the vast superiority of Italian over English for passionate argument.

Similarly, we have found in many cases that the expression of algorithmic parallelism in CUDA in fields as diverse as oil and gas, bioinformatics and finance is more elegant, compact and readable than equivalently-optimized CPU code, preserving and more clearly presenting the underlying algorithm. In a recent project we reduced 3,500 lines of highly-optimized C code to a CUDA kernel of about 800 lines. The optimized C was peppered with inline assembly, SSE macros, unrolled loops and special cases, making it difficult to read, extract algorithmic meaning and extend in the future. By comparison the CUDA code was cleaner and more readable. Ultimately it will be easier to maintain.

Commodity parallel processing began as a way to divide large tasks over multiple loosely-connected processors. Programming models supported the idea of dividing problems into a number of smaller pieces of equivalent work. Over time those processors have grown closer to one another in terms of latency and bandwidth, first as single operating system multiprocessor nodes and next as multicore processor components of those nodes. Looking towards the future we see only more cores per chip and more chips per node.

Even though our computing cores are more tightly coupled, our view of them is still very much from a top-down, task parallel mindset, i.e., take a large problem, divide it into many small pieces, distribute them to processing elements and just deal with the communication. In this top-down approach, we must discover new parallelism at each level, domain level parallelism for MPI, “for-loop” level for OpenMP, and data level parallelism for SSE. What is intriguing about CUDA is that it takes a bottom-up point of view, identifying the atomic unit of parallelism and embedding that in a hierarchical structure, e.g., thread::warp::block::grid.

The enduring contribution of GPU computing to HPC may well be a programming model that peels us away from the current top-down, multi-level, task-parallel approach, popularizing instead a more scalable bottom-up, data-parallel alternative. It’s not right for every problem but for those that map well to it, such as finite difference stencils and molecular dynamics among many others, it provides a cleaner, more natural language for expressing parallelism. It should be recognized that the simpler, cleaner expression for these applications in code is a main driver for the relatively-rapid adoption by commercial and academic practitioners. Further, there is no intrinsic reason scaling must stop at the grid or device level. One can easily imagine a generalization of CUDA on future architectures that abstracts one or more levels above the grid to accomplish an implementation across multiple devices, effectively aggregating global memory into one contiguous span; a sort of GPU/NUMA approach. If this can be done, then GPU computing will have made a great leap toward solving a key problem in parallel computing by reducing the programming model from three levels to one level for a simpler more elegant solution.

About the Author
Dr. Vincent NatoliDr. Natoli is the president and founder of Stone Ridge Technology. He is a computational physicist with 20 years experience in the field of high performance computing. He worked as a technical director at High Performance Technologies (HPTi) and before that for 10 years as a senior physicist at ExxonMobil Corporation, at their Corporate Research Lab in Clinton, New Jersey, and in the Upstream Research Center in Houston, Texas. Dr. Natoli holds Bachelor’s and Master’s degrees from MIT, a PhD in Physics from the University of Illinois Urbana-Champaign, and a Masters in Technology Management from the University of Pennsylvania and the Wharton School. Stone Ridge Technology is a professional services firm focused on authoring, profiling, optimizing and porting high performance technical codes to multicore CPUs, GPUs, and FPGAs.

Dr. Natoli can be reached at vnatoli@stoneridgetechnology.com.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource managed by the institution’s Advanced Center for Computing and C Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HPE to provide the DoD High Performance Computing Modernizatio Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Topological Quantum Superconductor Progress Reported

February 20, 2018

Overcoming sensitivity to decoherence is a persistent stumbling block in efforts to build effective quantum computers. Now, a group of researchers from Chalmers University of Technology (Sweden) report progress in devisi Read more…

By John Russell

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This