French Firm Brews Parallel Java Offering

By Michael Feldman

July 8, 2010

Yet another software toolmaker has offered up its solution to the parallel programming crisis. This week, French software vendor Ateji released a Java solution for multicore CPUs and multiprocessor server environments. Ateji PX for Java is aimed at developers who want to take advantage of current and future computer architectures by moving their legacy codes into the parallel realm.

Now Java is not exactly the first language that comes to mind when you think of parallel programming. Although the language encompasses the thread model and the notion of concurrency, it’s up to the Java Virtual Machine (JVM) component to implement true parallelism on the hardware. Attempts to add more parallel smarts to the language itself are numerous, but mostly incomplete. These include Titanium (a parallel dialect of Java), JOMP (an OpenMP-supported implementation), and JavaParty (for distributed computing environments), among others. Despite all these research projects, commercial adoption of parallel Java implementations never took hold.

Ateji, of course, would like to change that. One thing in its favor is that Ateji PX supports a wide range of parallel models, including task parallelism, data parallelism, speculative parallelism, recursive parallelism and distributed parallelism. And it does so with a relatively-small number of extensions to the standard language. The main addition is the “||” operator, which is used to tell the compiler to parallelize the associated source statement. For example, if you wanted to parallelize matrix multiplication via a for-loop you embed the || after the keyword:

for || (int i : I) {
   for (int j : J) {
      for (int k : K) {
         C[i][j] += A[i][k] * B[k][j];
      }
   }
}

Using this method, Ateji demonstrated a 3.4x speedup on a 4-core PC and a 12.5x speedup on a 16-core server. You could implement the equivalent parallelism by using Java’s thread library, but that would take about four times as much user code. Also, in that case, the original matrix multiplication algorithm gets hidden within a lot of thread management code.

In fact, the Ateji solution tosses the whole notion of threads out the window. “Threads are very ill-suited as a programming concept,” says the Ateji PX white paper. According to a Berkeley technical report cited in the whitepaper, a thread is really a hardware concept associated with the underlying processor architecture, rather than a natural language construct. This makes the thread model a much less productive way to think about parallelizing algorithms and can lead to buggy programs.

Instead, the Ateji model introduces the concept of a “branch,” which is basically equivalent to a parallelized statement. Beneath the covers, branches do get mapped to processor threads since the hardware demands it. But the mapping is context-specific, and the programmer can’t assume that the branch is (or is not) running in its own thread.

Ateji PX does provide compatibility with standard Java. The compiler front-end does a source-to-source translation to the base language, allowing the developer to keep his or her software development tool chain intact. It also enables the developer to revert back to vanilla Java once the parallelism has been implemented.

Even though the Ateji solution is being promoted as “parallel programming made simple,” the programmer is still stuck with the task of figuring out which statements and code sequences can be parallelized. The compiler doesn’t protect you from things like data races and deadlocks, so locks and atomic operations must be used if data is to be shared across parallelized code. For cases where sharing memory becomes too arduous or is just not available, Ateji PX also offers distributed memory parallelism. In fact, the Ateji PX programming manual suggests you mix the two, using a lot of small, well-defined parallel tasks that communicate via message passing.

For distributed parallelism, Ateji has come up with message passing primitives. At the simplest level, the programmer just needs to declare a channel object for message passing that is visible to both the sender and the receiver (using || chan ! value to send a message and || chan ? value to receive it). The fact that message passing can be specified at the language level rather than by invoking runtime routines (i.e., an MPI library) means that the source can be mapped to different types of distributed computing architecture independent of library implementations. It also allows different kinds of distributed models to be used — dataflow, stream programming, the Actor model, and the MapReduce algorithm.

Apparently, the distributed parallel feature is still a work in progress. According to the Ateji Web site, a version that is able to implement parallel branches on distributed memory hardware — compute clusters, supercomputers, grids and clouds — is still under development.

Of course, the whole idea of parallelizing code is to boost execution performance. Mapping code to more than one core or processor is bound to speed up the program, but Java, being an interpreted language, is not known for its stellar performance. For optimal execution, some heavy lifting will have to be done by the JVM. Just in time (JIT) compilers have helped to some extent, but the virtual machine model tends to be at odds with compute-bound codes. A 2004 report looked at the current state of Java for HPC and found that it is possible to deliver comparable performance to that of a Fortran/MPI implementation, for at least some codes, but scalability issues still remain. It’s not inconceivable that back-end Java technology could be developed for the performance market.

Although the official launch of Ateji PX was this week, the solution has been previewed by selected customers over the past year. A group at ISIMA claimed a seven-fold speedup with the Game of Life algorithm using Ateji PX on an 8-core Nehalem system. Another researcher at the University of Pisa benchmarked different parallel implementations of the convolution algorithm using the Ateji solution. In another case, an investment bank was able to parallelize a back-office Java app, reducing execution time from 40 minutes to eight minutes.

A free 30-day evaluation license is available for users that want to give Ateji PX a whirl. The solution is provided as an Eclipse plug-in, and all documentation and samples are provided online through the Ateji Web site.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This