French Firm Brews Parallel Java Offering

By Michael Feldman

July 8, 2010

Yet another software toolmaker has offered up its solution to the parallel programming crisis. This week, French software vendor Ateji released a Java solution for multicore CPUs and multiprocessor server environments. Ateji PX for Java is aimed at developers who want to take advantage of current and future computer architectures by moving their legacy codes into the parallel realm.

Now Java is not exactly the first language that comes to mind when you think of parallel programming. Although the language encompasses the thread model and the notion of concurrency, it’s up to the Java Virtual Machine (JVM) component to implement true parallelism on the hardware. Attempts to add more parallel smarts to the language itself are numerous, but mostly incomplete. These include Titanium (a parallel dialect of Java), JOMP (an OpenMP-supported implementation), and JavaParty (for distributed computing environments), among others. Despite all these research projects, commercial adoption of parallel Java implementations never took hold.

Ateji, of course, would like to change that. One thing in its favor is that Ateji PX supports a wide range of parallel models, including task parallelism, data parallelism, speculative parallelism, recursive parallelism and distributed parallelism. And it does so with a relatively-small number of extensions to the standard language. The main addition is the “||” operator, which is used to tell the compiler to parallelize the associated source statement. For example, if you wanted to parallelize matrix multiplication via a for-loop you embed the || after the keyword:

for || (int i : I) {
   for (int j : J) {
      for (int k : K) {
         C[i][j] += A[i][k] * B[k][j];
      }
   }
}

Using this method, Ateji demonstrated a 3.4x speedup on a 4-core PC and a 12.5x speedup on a 16-core server. You could implement the equivalent parallelism by using Java’s thread library, but that would take about four times as much user code. Also, in that case, the original matrix multiplication algorithm gets hidden within a lot of thread management code.

In fact, the Ateji solution tosses the whole notion of threads out the window. “Threads are very ill-suited as a programming concept,” says the Ateji PX white paper. According to a Berkeley technical report cited in the whitepaper, a thread is really a hardware concept associated with the underlying processor architecture, rather than a natural language construct. This makes the thread model a much less productive way to think about parallelizing algorithms and can lead to buggy programs.

Instead, the Ateji model introduces the concept of a “branch,” which is basically equivalent to a parallelized statement. Beneath the covers, branches do get mapped to processor threads since the hardware demands it. But the mapping is context-specific, and the programmer can’t assume that the branch is (or is not) running in its own thread.

Ateji PX does provide compatibility with standard Java. The compiler front-end does a source-to-source translation to the base language, allowing the developer to keep his or her software development tool chain intact. It also enables the developer to revert back to vanilla Java once the parallelism has been implemented.

Even though the Ateji solution is being promoted as “parallel programming made simple,” the programmer is still stuck with the task of figuring out which statements and code sequences can be parallelized. The compiler doesn’t protect you from things like data races and deadlocks, so locks and atomic operations must be used if data is to be shared across parallelized code. For cases where sharing memory becomes too arduous or is just not available, Ateji PX also offers distributed memory parallelism. In fact, the Ateji PX programming manual suggests you mix the two, using a lot of small, well-defined parallel tasks that communicate via message passing.

For distributed parallelism, Ateji has come up with message passing primitives. At the simplest level, the programmer just needs to declare a channel object for message passing that is visible to both the sender and the receiver (using || chan ! value to send a message and || chan ? value to receive it). The fact that message passing can be specified at the language level rather than by invoking runtime routines (i.e., an MPI library) means that the source can be mapped to different types of distributed computing architecture independent of library implementations. It also allows different kinds of distributed models to be used — dataflow, stream programming, the Actor model, and the MapReduce algorithm.

Apparently, the distributed parallel feature is still a work in progress. According to the Ateji Web site, a version that is able to implement parallel branches on distributed memory hardware — compute clusters, supercomputers, grids and clouds — is still under development.

Of course, the whole idea of parallelizing code is to boost execution performance. Mapping code to more than one core or processor is bound to speed up the program, but Java, being an interpreted language, is not known for its stellar performance. For optimal execution, some heavy lifting will have to be done by the JVM. Just in time (JIT) compilers have helped to some extent, but the virtual machine model tends to be at odds with compute-bound codes. A 2004 report looked at the current state of Java for HPC and found that it is possible to deliver comparable performance to that of a Fortran/MPI implementation, for at least some codes, but scalability issues still remain. It’s not inconceivable that back-end Java technology could be developed for the performance market.

Although the official launch of Ateji PX was this week, the solution has been previewed by selected customers over the past year. A group at ISIMA claimed a seven-fold speedup with the Game of Life algorithm using Ateji PX on an 8-core Nehalem system. Another researcher at the University of Pisa benchmarked different parallel implementations of the convolution algorithm using the Ateji solution. In another case, an investment bank was able to parallelize a back-office Java app, reducing execution time from 40 minutes to eight minutes.

A free 30-day evaluation license is available for users that want to give Ateji PX a whirl. The solution is provided as an Eclipse plug-in, and all documentation and samples are provided online through the Ateji Web site.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break “Speed Limit”

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Intel Ships Drives Based on 3-D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3-D XPoint non-volatile memory technology as it targets data-driven workloads. Read more…

By George Leopold

Researchers Recreate ‘El Reno’ Tornado on Blue Waters Supercomputer

March 16, 2017

The United States experiences more tornadoes than any other country. About 1,200 tornadoes touch down each each year in the U.S. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

AMD Expands Exascale Vision at IEEE HPC Symposium

March 7, 2017

With the race towards exascale heating up – for example, the Exascale Computing Program PathForward awards are expected soon – AMD delivered more details of its exascale vision at last month’s 23rd IEEE Symposium on High Performance Computer Architecture. The chipmaker presented an “Exascale Node Architecture (ENA) as the primary building block for exascale machine” including descriptions of component, interconnect, and packaging strategy along with simulation benchmarks to bolster its case. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This