Supernova Factory Employs EC2, Puts Cloud to the Test

By Nicole Hemsoth

July 9, 2010

There is something thrilling about the very term “supernova factory” in that it invokes startling mental images culled from science fiction and our own imaginations. However, the real factory in question here is at the heart of an international research collaboration, although not one in the business of mass-producing supernovas in some kind of cosmic warehouse. It is instead examining the nature of dark energy to understand a “simple” concept — the expanding universe.

The universe is growing rapidly due to what physicists have dubbed as dark energy — a finding that was made possible by comparing the relative brightness of “close” supernovae to the brightness of those much farther in the distance (which culminates in the difference of several billion years). The comparison is not possible without understanding the underlying physics that produced the supernovae that is the nearest, which is where the Nearby Supernova Factory (SNfactory) enters the picture. The project relies on a complicated “pipeline of serial processes that execute various image processing algorithms on approximately 10Tbs of data” to step closer to understanding dark energy and its role in the universe’s constant expansion.

While all of this is interesting enough on its own, the project has a particularly unique HPC and cloud slant due to the efforts of Berkeley researcher Lavanya Ramakrishnan and her team. They have been able to shed light on how a public cloud like EC2 can (and cannot) be used for some scientific computing applications by bringing SNfactory’s pipeline to the cloud. During a recent chat with Ramakrishnan, it became clear that while there are attractive features of clouds, there are some hurdles that relate to just the issues that most concern scientific users, including performance, reliability, as well as ease of use and configuration.

In her research that spans beyond this particular project’s scope, Lavanya Ramakrishnan focuses directly on topics related to finding ways to handle scientific workloads that are reliant on high performance and distributed systems. Accordingly, she has looked extensively at the possibilities of deploying clouds to handle scientiic workloads as well as considering grid technologies and their relevant role in the area.

The SNfactory cloud computing evaluation project in question is important as it provides not only a case study of using HPC in a public cloud, but also because of the specificity of design tests to maximize performance outside of the physical infrastructure. The paper presenting their findings, entitled “Seeking Supernovae in the Clouds: A Performance Study,” won the top honor at the First Workshop on Scientific Cloud Computing this summer. This is not a surprise as the paper provides an in-depth examination of the benefits and drawbacks of public clouds in specific context along with detailed descriptions of the various configurations that produced their conclusions.

Getting Scientific Computing Off the Ground

Until just recently, the Supernova Factory’s complex pipeline was fed into a local cluster. With the oversight and alterations on the part of Berkeley researchers to refine the environment from application-level up, the pipeline was fed into a Amazon’s EC2 after significant experimentation, all of which is discussed at length in the paper. These experimental designs were for the specific purpose of determining what options were available on a design level to suit application data placement and more generally, to provide a distinct view of the performance results in a virtualized cluster environment.

Overall, the authors concluded that “cloud computing offers many features that make it an attractive alternative. The ability to completely control the software environment in a cloud is appealing when dealing with a community-developed science pipeline with many unique library and platform requirements.” While this is a bright statement about the use of the cloud for a project like this, according to Lavanya Ramakrishnan, who spoke with HPC in the Cloud recently about the results of the Berkeley team’s work, the cloud, at least as offered by EC2 is not an out of the box solution for scientific computing users and there were a number of challenges along the way that present some meaty discussion bits for those who debate that the cloud is not ready for HPC.

Ramakrishnan is not the first scientific HPC user to comment on the complexity that is involved when first preparing to send applications into the cloud and setting up the environment. She noted that while it was difficult to determine how long it took them to get started since their purpose was to test multiple designs and models, she advised that it was not a quick or easy process. Before even getting to the point where one would be ready to make the leap, there would have to be exhaustive research about how to best tailor their environment to the specific applications.

In addition to being a complex task to undertake, once the ideal environment is created and the applications and virtual machines have been synched into what might appear to be the best configuration, there are also some troubles with the predictable enemies of HPC and cloud — performance and reliability. The authors of the study encountered a number of failures throughout their experiments with EC2 that would not have been matters of concern with the traditional environment. As Ramakrishnan stated, “A lot of these [scientific] applications have not been designed with these commodity clusters in mind so the reliability issue, which wasn’t a major problem before, is now important.”

The Big Picture for Scientific Computing in the Public Cloud

The full paper provides deep specifics for those looking to design their cloud environment for scientific computing that can be of immense value and save a great deal of time and frustration. It is critical reading for anyone looking to use the cloud for similar (although chances are, on much smaller-scale) workloads.

What is important here in the scientific computing sense bears repeating. There are many questions about the suitability of public clouds for HPC-type applications and while there are many favorable experiences that bode well for the future of this area, some of the barriers and problems need to be addressed in a major way before the clouds will be a paradigm shift for scientific computing.

Ramakrishnan, who as it was noted earlier, spends much of her research time investigating alternatives to traditional HPC, sees how cloud computing is a promising technology in theory for researchers. For instance, as she noted, in physical environments “applications suffer because the people running the machines need to upgrade their packages and software to run in these environments. Sometimes there are compatibility issues and this gets even more complicated when they have collaborations across groups because everyone needs to upgrade to a different version. Software maintenance becomes a big challenge. Cloud has therefore become attractive to a lot of scientific computing users, including the Supernova Factory — cloud lets them maintain this entire stack they need and this alone is very attractive.”

Based on her experiences using a number of different configurations and models for cloud in scientific computing, Ramakrishnan indicated that while there is a class of scientific applications that are well-suited to the cloud, there are indeed many challenges. Furthermore, the important point is that researchers understand that this solution, even if the applications fit well with clouds, cannot be undertaken lightly. A great deal of preparation is required, especially if one is operating on the large scale, before making the leap into the cloud.

Scientific computing and cloud computing are not at odds; they live on the same planet but there is a vast ocean that separates the two at this point — at least if we are talking about public clouds. Performance and reliability — two keys to successfully running applications on bare metal systems — are in question in the public cloud and until ideal configurations can be presented across a wide range of application types more research like that being performed by Ramakrishnan and her colleagues is critical.

Many of the points that Ramakrishnan made about the suitability of the public cloud at large for this kind of workload correspond with what Kathy Yelick discussed in an overview of current progress at the Magellan Testbed, another research endeavor out of Berkeley. The consensus is that there is promise — but only for certain types of applications — at least until more development on the application and cloud levels takes place.

Still, Amazon insists with great ferocity that the future of scientific computing lies in their cloud offering, and this is echoed by Microsoft and others with Azure and EC2-like services. Until the scientific computing community fully experiments with the public cloud to determine how best to configure the enviornment for their applications, we will probably hear a great deal more conflicting information about the suitability of the public clouds for large-scale scientific workloads.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hours at the Argonne Leadership Computing Facility (ALCF). The o Read more…

By HPCwire Staff

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

HPE Extreme Performance Solutions

Optimized HPC Solutions Driving Performance, Efficiency, and Scale

Technology is transforming nearly every human and business process, from driving business growth, to translating documents in real time, to enhancing decision-making in areas like financial services and scientific research. Read more…

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

DoE Awards 24 ASCR Leadership Computing Challenge (ALCC) Projects

June 28, 2017

On Monday, the U.S. Department of Energy’s (DOE’s) ASCR Leadership Computing Challenge (ALCC) program awarded 24 projects a total of 2.1 billion core-hour Read more…

By HPCwire Staff

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This