Supernova Factory Employs EC2, Puts Cloud to the Test

By Nicole Hemsoth

July 9, 2010

There is something thrilling about the very term “supernova factory” in that it invokes startling mental images culled from science fiction and our own imaginations. However, the real factory in question here is at the heart of an international research collaboration, although not one in the business of mass-producing supernovas in some kind of cosmic warehouse. It is instead examining the nature of dark energy to understand a “simple” concept — the expanding universe.

The universe is growing rapidly due to what physicists have dubbed as dark energy — a finding that was made possible by comparing the relative brightness of “close” supernovae to the brightness of those much farther in the distance (which culminates in the difference of several billion years). The comparison is not possible without understanding the underlying physics that produced the supernovae that is the nearest, which is where the Nearby Supernova Factory (SNfactory) enters the picture. The project relies on a complicated “pipeline of serial processes that execute various image processing algorithms on approximately 10Tbs of data” to step closer to understanding dark energy and its role in the universe’s constant expansion.

While all of this is interesting enough on its own, the project has a particularly unique HPC and cloud slant due to the efforts of Berkeley researcher Lavanya Ramakrishnan and her team. They have been able to shed light on how a public cloud like EC2 can (and cannot) be used for some scientific computing applications by bringing SNfactory’s pipeline to the cloud. During a recent chat with Ramakrishnan, it became clear that while there are attractive features of clouds, there are some hurdles that relate to just the issues that most concern scientific users, including performance, reliability, as well as ease of use and configuration.

In her research that spans beyond this particular project’s scope, Lavanya Ramakrishnan focuses directly on topics related to finding ways to handle scientific workloads that are reliant on high performance and distributed systems. Accordingly, she has looked extensively at the possibilities of deploying clouds to handle scientiic workloads as well as considering grid technologies and their relevant role in the area.

The SNfactory cloud computing evaluation project in question is important as it provides not only a case study of using HPC in a public cloud, but also because of the specificity of design tests to maximize performance outside of the physical infrastructure. The paper presenting their findings, entitled “Seeking Supernovae in the Clouds: A Performance Study,” won the top honor at the First Workshop on Scientific Cloud Computing this summer. This is not a surprise as the paper provides an in-depth examination of the benefits and drawbacks of public clouds in specific context along with detailed descriptions of the various configurations that produced their conclusions.

Getting Scientific Computing Off the Ground

Until just recently, the Supernova Factory’s complex pipeline was fed into a local cluster. With the oversight and alterations on the part of Berkeley researchers to refine the environment from application-level up, the pipeline was fed into a Amazon’s EC2 after significant experimentation, all of which is discussed at length in the paper. These experimental designs were for the specific purpose of determining what options were available on a design level to suit application data placement and more generally, to provide a distinct view of the performance results in a virtualized cluster environment.

Overall, the authors concluded that “cloud computing offers many features that make it an attractive alternative. The ability to completely control the software environment in a cloud is appealing when dealing with a community-developed science pipeline with many unique library and platform requirements.” While this is a bright statement about the use of the cloud for a project like this, according to Lavanya Ramakrishnan, who spoke with HPC in the Cloud recently about the results of the Berkeley team’s work, the cloud, at least as offered by EC2 is not an out of the box solution for scientific computing users and there were a number of challenges along the way that present some meaty discussion bits for those who debate that the cloud is not ready for HPC.

Ramakrishnan is not the first scientific HPC user to comment on the complexity that is involved when first preparing to send applications into the cloud and setting up the environment. She noted that while it was difficult to determine how long it took them to get started since their purpose was to test multiple designs and models, she advised that it was not a quick or easy process. Before even getting to the point where one would be ready to make the leap, there would have to be exhaustive research about how to best tailor their environment to the specific applications.

In addition to being a complex task to undertake, once the ideal environment is created and the applications and virtual machines have been synched into what might appear to be the best configuration, there are also some troubles with the predictable enemies of HPC and cloud — performance and reliability. The authors of the study encountered a number of failures throughout their experiments with EC2 that would not have been matters of concern with the traditional environment. As Ramakrishnan stated, “A lot of these [scientific] applications have not been designed with these commodity clusters in mind so the reliability issue, which wasn’t a major problem before, is now important.”

The Big Picture for Scientific Computing in the Public Cloud

The full paper provides deep specifics for those looking to design their cloud environment for scientific computing that can be of immense value and save a great deal of time and frustration. It is critical reading for anyone looking to use the cloud for similar (although chances are, on much smaller-scale) workloads.

What is important here in the scientific computing sense bears repeating. There are many questions about the suitability of public clouds for HPC-type applications and while there are many favorable experiences that bode well for the future of this area, some of the barriers and problems need to be addressed in a major way before the clouds will be a paradigm shift for scientific computing.

Ramakrishnan, who as it was noted earlier, spends much of her research time investigating alternatives to traditional HPC, sees how cloud computing is a promising technology in theory for researchers. For instance, as she noted, in physical environments “applications suffer because the people running the machines need to upgrade their packages and software to run in these environments. Sometimes there are compatibility issues and this gets even more complicated when they have collaborations across groups because everyone needs to upgrade to a different version. Software maintenance becomes a big challenge. Cloud has therefore become attractive to a lot of scientific computing users, including the Supernova Factory — cloud lets them maintain this entire stack they need and this alone is very attractive.”

Based on her experiences using a number of different configurations and models for cloud in scientific computing, Ramakrishnan indicated that while there is a class of scientific applications that are well-suited to the cloud, there are indeed many challenges. Furthermore, the important point is that researchers understand that this solution, even if the applications fit well with clouds, cannot be undertaken lightly. A great deal of preparation is required, especially if one is operating on the large scale, before making the leap into the cloud.

Scientific computing and cloud computing are not at odds; they live on the same planet but there is a vast ocean that separates the two at this point — at least if we are talking about public clouds. Performance and reliability — two keys to successfully running applications on bare metal systems — are in question in the public cloud and until ideal configurations can be presented across a wide range of application types more research like that being performed by Ramakrishnan and her colleagues is critical.

Many of the points that Ramakrishnan made about the suitability of the public cloud at large for this kind of workload correspond with what Kathy Yelick discussed in an overview of current progress at the Magellan Testbed, another research endeavor out of Berkeley. The consensus is that there is promise — but only for certain types of applications — at least until more development on the application and cloud levels takes place.

Still, Amazon insists with great ferocity that the future of scientific computing lies in their cloud offering, and this is echoed by Microsoft and others with Azure and EC2-like services. Until the scientific computing community fully experiments with the public cloud to determine how best to configure the enviornment for their applications, we will probably hear a great deal more conflicting information about the suitability of the public clouds for large-scale scientific workloads.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan and will begin operation in fiscal 2018 (starts in April). A Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This