Amazon Climbs Into the HPC Arena

By Michael Feldman

July 14, 2010

Amazon’s cloud platform got a high performance boost this week with the announcement of its Cluster Compute Instances (CCI). CCI specifically targets HPC workloads, incorporating high-end CPU horsepower and a low-latency interconnect fabric into the company’s popular EC2 computing on-demand offering. The new capability welcomes HPC into the most well-recognized public cloud in the world.

In a nutshell, the new offering is based on a new EC2 instance under the CCI category: the Cluster Compute Quadruple Extra Large Instance, which, for the sake of brevity, I’m going to refer to as the HPC instance. It is defined as of a dual-socket Intel Xeon X5570 (2.93 GHz, quad-core) server or virtual server with 23 GB of memory, and 1,690 GB of external storage. Servers are connected via a 10 Gigabit Ethernet network. The HPC instance is the ninth EC2 instance type offered by Amazon and the only one that actually spells out the specific CPU and I/O fabric being employed. For the other eight instances, you are provided a generic notion of capability based on a specified number of EC2 compute units and a general metric for network I/O performance (moderate or high).

For users of the HPC instance, the default cluster size (aka the instance limit) is eight servers, providing 64 cores. That’s probably the sweet spot for the type of customer Amazon is going after — presumably middle-range HPC users with moderately scalable applications. But, as in any computing on-demand offering worthy of that title, capacity can be extended dynamically.

“An instance limit is only an initial limit and can be easily removed by sending us an email, just like any other Amazon EC2 instance,” said Deepak Singh, business development manager for Amazon Web Services (AWS), in an email to HPCwire. “Customers can provision instances in minutes and shut them down and restart as they need in a truly scalable and elastic environment.” The exact extent of this elasticity is somewhat of a mystery though. And at this point, Amazon is not revealing how big a cluster can be devoted to a single customer.

It’s worth noting that Amazon has run Linpack on 880 of their HPC-style servers, reporting a performance result of 41.82 teraflops. That’s well into TOP500 territory (equivalent to the 146 slot on the June 2010 list). It’s also worth noting that, according to Intel, the peak performance on the Xeon X5570 CPU is 46.88 gigaflops, which means the Linpack efficiency for the EC2 cluster is just a shade over 50 percent. That’s pretty much on par with vanilla GigE clusters, although the best 10 GbE cluster can hit 84 percent Linpack efficiency and most InfiniBand-based systems will be in the 70 to 92 percent range.

Customers won’t care about unimpressive Linpack yields, but it may remind potential users that even the new HPC instance may behave less like a supercomputer than they might be expecting. Amazon has provided few details about the 10 GbE setup or how the Hardware Virtual Machine (HVM) virtualization scheme being employed might impact performance. And since there are no performance metrics publicly available for real applications, it’s too early to tell how traditional MPI codes will fare. To its credit, Amazon is being careful not to make claims it can’t demonstrate.

“During our private beta period, customers ran a variety of MPI codes, including MATLAB, in-house computational fluid dynamics software for aircraft and automobile design, and molecular dynamics codes for protein simulation like NAMD,” said Singh. “Our partners and AWS used standard benchmark packages like HPCC and IMB. Now that the service is available to the broad public, we expect an increased variety in the types of applications our customers will be running.”

The Magellan Cloud research team at the National Energy Research Scientific Computing Center (NERSC) was one of those beta customers and got a chance to test drive the new EC2 offering prior to this week’s official launch. They reported that a series of HPC application benchmarks “ran 8.5 times faster on Cluster Compute Instances for Amazon EC2 than the previous EC2 instance types.” But considering the lesser CPUs and GigE configurations on the non-HPC instances, that may end up being faint praise.

EC2 has surely left some room at the high end for more performant on-demand platforms and for customers that require a greater level of HPC expertise than Amazon can muster. Experienced HPC vendors like IBM, SGI, Penguin Computing, and others are already staking out this territory. While those vendors may be gratified that a company like Amazon thinks the HPC on-demand model is ready for prime time, those same companies will now have to prove their offerings are better than Amazon’s.

Penguin Computing seems more than willing to make that case. From CEO Charles Wuischpard’s point of view, his company’s one-year old Penguin On-Demand (POD) HPC rental service has some clear differentiation with Amazon’s new HPC offering. At the hardware level, POD offers more memory per core than EC2, InfiniBand connectivity, a GPU acceleration option, and Panasas-based parallel file storage.

But the big differentiator, according to Wuischpard, is the level of engineering support they’re able to provide. Every POD deal comes with its own HPC engineer, who makes sure the whole software stack — cluster management, network drivers, compilers, and so on — is configured correctly for the end-user applications. “The customers we have today are truly not computer scientists and we help them through the whole process,” said Wuischpard.

Unit pricing is somewhat comparable. POD charges $0.25 per core hour for compute time, while Amazon offers one HPC instance (two quad-core CPUs) for 1.60 per hour. Both provide cost incentives for longer time commitments. But overall, Wuischpard thinks POD will offer better value than Amazon. It should be remembered that wall clock time is the key metric here. If an on-demand platform can run a given application twice as fast as their competitor, they’ve effectively cut their per unit cost in half. “As long as we’re less expensive overall, I’m pretty comfortable with where we are,” said Wuischpard.

For a broader perspective of Amazon’s HPC launch, see Amazon Adds HPC Capability to EC2 and related coverage at HPC in the Cloud.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This