Supercomputers When They Sizzle

By Michael Feldman

July 15, 2010

Summer is heating up, and so are our supercomputers. The insatiable drive for more computational performance means servers are becoming ever denser, and correspondingly hotter. Today, a rack of high-end blades can dissipate 30 kilowatts or more. And with the era of coprocessor acceleration upon us, many HPC servers are being fitted with 200-watt GPUs, further adding to the heat load.

This wouldn’t matter so much if we kept our machines in the pool, but air being what it is (a poor conductor of heat), the burden on the cooling infrastructure keeps escalating. Keeping the machinery at a comfortable temperature can represent from a third to a half of a facility’s power consumption. Even with the most recent recommendations from the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) to crank up the datacenter thermostat from 77F to 80F, HPC machine rooms are reaching their thermal limits.

That’s why liquid cooling has been such a big part of supercomputing. These machines, especially the proprietary designs, have always been on the leading edge of computational density, and sometimes wouldn’t survive on air flow alone. In fact, since the days of the early Cray systems in the 1970s, a lot of the top-end supercomputers have had water or some other liquid coolant running through the hardware. That’s why the father of supercomputing, Seymour Cray, referred to himself as “an overpaid plumber.”

A couple of recent stories point to a new direction for liquid cooling. Instead of just running coolant through the racks, it’s now being funneled directly onto the hottest components: the processors themselves. IBM’s Aquasar supercomputer, which was recently delivered to the Swiss Federal Institute of Technology Zurich (ETH Zurich), is an example of one such system.

The 6-teraflop Aquasar machine uses customized water-cooled BladeCenter servers that sport both Intel Nehalem CPUs and IBM PowerXCell processors. Water is piped into a heat exchanger that sits right on top of the chips. Because of the intimate contact with the processors, the water does not need to be chilled, and can be as warm as 60C. That’s 140F for those of you keeping score in the USA. The idea is to keep the processors below their critical maximum of 85C (185F).

At ETH Zurich, the heated (waste) water is piped away to help warm the buildings at the facility. IBM claims the carbon footprint of such a system is reduced by as much as 85 percent compared to a conventionally-cooled computer setup.

A more general case involves what Google is doing — or thinking about doing. The company recently filed to patent a server assembly design in which two motherboards sandwich a liquid-cooled heat sink. In this setup, the processors are being cooled via the heat sink, while the other components, like the memory chips, are air cooled. According to a report in Data Center Knowledge:

The design is among a number of Google patents on new cooling techniques for high-density servers that have emerged since the company’s last major disclosure of its data center technology in April 2009. Several of these patents deal with cooling innovations using either liquid cooling or air cooling applied directly on server components.

In 2007, Google filed a patent for a different sort of liquid-cooling arrangement. The “Water Based Data Center” design outlined sea-based computing facility that floats on the water, employs the waves to help generate electricity, and uses the sea water to help provide cooling for the computers. That patent was granted in May 2009.

Perhaps an even more novel method is immersion cooling, in which the whole server is submerged into an inert liquid, such as mineral oil. That too, is not a new concept. Some of the early supercomputing systems, including the Cray-2*, used immersion cooling. A modern version is being offered by Austin, Texas-based Green Revolution Cooling, which claims its horizonal rack design and “GreenDef” oil coolant can manage power densities as high as 100 kilowatts per rack. Bring on the GPUs!

The company is claiming its immersion system uses 95 percent less power than conventional cooling. Some of that can be attributed to the fact that all the internal server fans can be yanked out, which alone should reduce the power draw by 5 to 25 percent. The company recently installed some test units at the Texas Advanced Computing Center (TACC). If the Green Revolution offering pans out as advertised, maybe we’ll see more supers taking the plunge.

*The original post incorrectly specifed Cray-1 as one of the early supercomputers using immersion cooling.  It was the Cray-2 design that introduced this cooling design. Hat tips to readers Richard Lakein and Max  Dechantsreiter for pointing out the gaffe. — Michael

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and received a patent for a "processor design, which allows rep Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

  • arrow
  • Click Here for More Headlines
  • arrow
Share This