Supercomputers When They Sizzle

By Michael Feldman

July 15, 2010

Summer is heating up, and so are our supercomputers. The insatiable drive for more computational performance means servers are becoming ever denser, and correspondingly hotter. Today, a rack of high-end blades can dissipate 30 kilowatts or more. And with the era of coprocessor acceleration upon us, many HPC servers are being fitted with 200-watt GPUs, further adding to the heat load.

This wouldn’t matter so much if we kept our machines in the pool, but air being what it is (a poor conductor of heat), the burden on the cooling infrastructure keeps escalating. Keeping the machinery at a comfortable temperature can represent from a third to a half of a facility’s power consumption. Even with the most recent recommendations from the American Society of Heating, Refrigerating and Air-conditioning Engineers (ASHRAE) to crank up the datacenter thermostat from 77F to 80F, HPC machine rooms are reaching their thermal limits.

That’s why liquid cooling has been such a big part of supercomputing. These machines, especially the proprietary designs, have always been on the leading edge of computational density, and sometimes wouldn’t survive on air flow alone. In fact, since the days of the early Cray systems in the 1970s, a lot of the top-end supercomputers have had water or some other liquid coolant running through the hardware. That’s why the father of supercomputing, Seymour Cray, referred to himself as “an overpaid plumber.”

A couple of recent stories point to a new direction for liquid cooling. Instead of just running coolant through the racks, it’s now being funneled directly onto the hottest components: the processors themselves. IBM’s Aquasar supercomputer, which was recently delivered to the Swiss Federal Institute of Technology Zurich (ETH Zurich), is an example of one such system.

The 6-teraflop Aquasar machine uses customized water-cooled BladeCenter servers that sport both Intel Nehalem CPUs and IBM PowerXCell processors. Water is piped into a heat exchanger that sits right on top of the chips. Because of the intimate contact with the processors, the water does not need to be chilled, and can be as warm as 60C. That’s 140F for those of you keeping score in the USA. The idea is to keep the processors below their critical maximum of 85C (185F).

At ETH Zurich, the heated (waste) water is piped away to help warm the buildings at the facility. IBM claims the carbon footprint of such a system is reduced by as much as 85 percent compared to a conventionally-cooled computer setup.

A more general case involves what Google is doing — or thinking about doing. The company recently filed to patent a server assembly design in which two motherboards sandwich a liquid-cooled heat sink. In this setup, the processors are being cooled via the heat sink, while the other components, like the memory chips, are air cooled. According to a report in Data Center Knowledge:

The design is among a number of Google patents on new cooling techniques for high-density servers that have emerged since the company’s last major disclosure of its data center technology in April 2009. Several of these patents deal with cooling innovations using either liquid cooling or air cooling applied directly on server components.

In 2007, Google filed a patent for a different sort of liquid-cooling arrangement. The “Water Based Data Center” design outlined sea-based computing facility that floats on the water, employs the waves to help generate electricity, and uses the sea water to help provide cooling for the computers. That patent was granted in May 2009.

Perhaps an even more novel method is immersion cooling, in which the whole server is submerged into an inert liquid, such as mineral oil. That too, is not a new concept. Some of the early supercomputing systems, including the Cray-2*, used immersion cooling. A modern version is being offered by Austin, Texas-based Green Revolution Cooling, which claims its horizonal rack design and “GreenDef” oil coolant can manage power densities as high as 100 kilowatts per rack. Bring on the GPUs!

The company is claiming its immersion system uses 95 percent less power than conventional cooling. Some of that can be attributed to the fact that all the internal server fans can be yanked out, which alone should reduce the power draw by 5 to 25 percent. The company recently installed some test units at the Texas Advanced Computing Center (TACC). If the Green Revolution offering pans out as advertised, maybe we’ll see more supers taking the plunge.

*The original post incorrectly specifed Cray-1 as one of the early supercomputers using immersion cooling.  It was the Cray-2 design that introduced this cooling design. Hat tips to readers Richard Lakein and Max  Dechantsreiter for pointing out the gaffe. — Michael

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This