Nimbus Goes After HPC Market with Disk-Priced Flash Array

By Michael Feldman

July 20, 2010

Nimbus Data Systems has unveiled its new high-density enterprise flash memory system, delivering 10 terabytes of solid state capacity per 2U shelf. The S1000 can scale up to 250 TB per system and is being priced to challenge spinning disk appliances head on. For HPC and other enterprise users looking to turbo-charge performance of terascale-sized data sets, Nimbus offers a compelling case for making the switch to flash technology.

Four-year old Nimbus is headquartered in San Francisco, Calif., and had been aggressively pursuing the emerging flash-based storage market with its S-class storage arrays. The company has managed to collect about 200 customers, the largest being the US Department of Defense. They’ve also corralled OEM wins with IBM Tivoli and AMCC. As a result, Nimbus says they’re profitable and debt free — not bad for a company that grew up during one of the worst economic downturns in modern times.

The general idea behind employing flash memory for I/O drives is to take advantage of Moore’s Law in order to close the performance gap between external storage and the other computer components. Over the past 10 years, hard drives have not become appreciably faster or more power efficient, while the performance of a computer’s solid state components has increased several-fold. “We believe storage is on an unsustainable trajectory in the datacenter,” says Nimbus CEO Tom Isakovich. “While CPU, memory and network performance have all grown exponentially, storage performance and storage efficiency really have not kept pace.”

External storage demand is escalating, though. Virtualization, data warehousing, and high performance computing are multiplying the need for more I/O, especially random-access I/O. Isakovich says more hard drives, storage tiering, and cache solutions are not the answer. According to him, while they may boost performance a bit, they’re really not addressing the underlying inefficiency of the spinning disk technology. “Drives have really run their course,” says Isakovich.

Nimbus’ mission to drive a stake through the heart of the hard drive was launched in April, with its first all-flash memory S-class storage arrays: the S250 and S500, which provided 2.5 TB and 5.0 TB per shelf, respectively. All of the S-class offerings use Micron’s Enterprise Multi-Level Cell (EMLC) NAND flash, which is five times more durable than vanilla MLC used in consumer devices and much less expensive than Single-Level Cell (SLC) NAND commonly used for most enterprise SSDs. SLC remains the more robust technology, but at about quadruple the cost and a quarter of the density of EMLC silicon.

Nimbus has managed to layer even more reliability on top of the EMLC silicon by incorporating write amplification, wear leveling and dual-parity RAID into its design. They also over-provision the storage by 28 percent to account for the inevitable degradation of the NAND devices over time. The S1000 employs the higher density 34 nm EMLC NAND from Micron, which makes it possible to offer 400 GB of storage per blade. (Because of the over-provisioning, there is actually 512 GB per blade.) The product comes with a one-year warranty, which is upgradeable to three or five years, although Isakovich believes the hardware will actually be just fine for up to 10 years.

Although S1000 performance may be less than the more expensive SLC-based flash memory products out there, the Nimbus offering easily outruns 15K RPM disk array technology typically found in tier 1 storage. Compared to disk, the S-class products deliver up to 24 times more IOPS (1.65 million), up to 16 times faster data transfer (7.2 GB/sec), and 95 percent lower latency (300 microseconds). Space-wise, a single S1000 2U shelf can deliver the same number of IOPS as in four racks of spinning disks.

Since no moving parts are involved, power savings are equally as impressive. Nimbus is claiming 90 percent lower energy usage — as low as 15 watts per terabyte — and a 70 percent reduction in BTU cooling demand. And since there is less heat generated and no motors to wear out, fewer replacements will be needed.

An S1000 shelf is made up of 24 hot-swappable storage blades. Up to 25 shelves can be stacked via 6G SAS ports, making it possible to deploy a 250 GB file system all in flash. A storage shelf is powered by two Intel quad-core Nehalem processors, although Isakovich says expansion shelves don’t require CPUs or the associated memory. According to him, the flash is so much faster than a disk that the CPUs are rarely tied up waiting for I/O to complete, so you just need less of them to manage the storage.

Since all S-class gear speaks iSCSI, NFS, and CIFS, the hardware can act as both a SAN device and a NAS device. Systems come standard with four 10GbE ports (SFP+ or 10GBASE-T) per appliance, which can auto-negotiate down to GbE when needed. Nimbus is also now offering an upgrade to twelve 10GbE ports, using a technology they’re calling “FlexConnect.” It employs triple active-active 10 GbE network controllers, and, in some cases, will eliminate the need for a standalone SAN switch.

The combination of off-the-shelf 10GbE components, Intel CPUs and EMLC NAND chips has enabled Nimbus to achieve cost parity with 15K disks products. All the S-class products, including the new S1000, are priced at $10,000 per terabyte, which is more or less in line with other tier 1 disk-based appliances.

Of course, any vendor could assemble similar hardware, but the S1000 is more than just flash-in-a-box. The real secret sauce is Nimbus’ HALO operating system, a full-featured software stack that comes standard in all S-class platforms. It includes snapshots, replication, mirroring, deduplication, compression, thin provisioning, real-time analytics, proactive notification, and a Web management interface. In late 2010, the company is planning to make a programmable API available as well. Because all this functionality is baked in, there is no need to purchase third-party software or hardware to make the system enterprise-capable. “We think that gives us a sustainable advantage since it has taken us five years to write all this software,” says Isakovich.

Because the company has been able to solve the acquisition cost penalty for flash, while at the same time offering a feature-rich enterprise storage platform, it may be carving a unique home for itself in the IT landscape. Competitors like NetApp, EqualLogic (Dell) and EMC all offer SSD capabilities to one extent or another, but there are no pure flash offerings to match the Nimbus S-class. On the other hand, pure flash array vendors may offer better performance with SLC NAND, but typically bundle little if any software with their systems. And because those systems are based on the more expensive SLC technology, they come at a price premium.

With the S-class platform, Nimbus is looking to go after IOPS-critical storage applications, especially virtualization, traditional database processing, and On-Line Transaction Processing (OLTP). Now, with the higher capacity S1000, they have a credible entry for the HPC market. Data-intensive applications like seismic analysis, image rendering, and many science codes are I/O bound and thus ideally suited for flash-based storage. Isakovich says they have a proof of concept deployment at one of the big supercomputing centers and also have a couple of oil and gas companies looking at systems. He expects to see some customer deployments by the end of the quarter.

The new platform currently tops out at 250 TB per system, but the dedupe and compression technology can boost the effective storage by a factor of 3 to 10, pushing the S1000 into the petascale realm. According to Isakovich, they’re planning to expand system capacity even further later this year. “The demand we’re seeing from the HPC community is rather significant and we think we can continue to push the density envelope even more,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This