Nimbus Goes After HPC Market with Disk-Priced Flash Array

By Michael Feldman

July 20, 2010

Nimbus Data Systems has unveiled its new high-density enterprise flash memory system, delivering 10 terabytes of solid state capacity per 2U shelf. The S1000 can scale up to 250 TB per system and is being priced to challenge spinning disk appliances head on. For HPC and other enterprise users looking to turbo-charge performance of terascale-sized data sets, Nimbus offers a compelling case for making the switch to flash technology.

Four-year old Nimbus is headquartered in San Francisco, Calif., and had been aggressively pursuing the emerging flash-based storage market with its S-class storage arrays. The company has managed to collect about 200 customers, the largest being the US Department of Defense. They’ve also corralled OEM wins with IBM Tivoli and AMCC. As a result, Nimbus says they’re profitable and debt free — not bad for a company that grew up during one of the worst economic downturns in modern times.

The general idea behind employing flash memory for I/O drives is to take advantage of Moore’s Law in order to close the performance gap between external storage and the other computer components. Over the past 10 years, hard drives have not become appreciably faster or more power efficient, while the performance of a computer’s solid state components has increased several-fold. “We believe storage is on an unsustainable trajectory in the datacenter,” says Nimbus CEO Tom Isakovich. “While CPU, memory and network performance have all grown exponentially, storage performance and storage efficiency really have not kept pace.”

External storage demand is escalating, though. Virtualization, data warehousing, and high performance computing are multiplying the need for more I/O, especially random-access I/O. Isakovich says more hard drives, storage tiering, and cache solutions are not the answer. According to him, while they may boost performance a bit, they’re really not addressing the underlying inefficiency of the spinning disk technology. “Drives have really run their course,” says Isakovich.

Nimbus’ mission to drive a stake through the heart of the hard drive was launched in April, with its first all-flash memory S-class storage arrays: the S250 and S500, which provided 2.5 TB and 5.0 TB per shelf, respectively. All of the S-class offerings use Micron’s Enterprise Multi-Level Cell (EMLC) NAND flash, which is five times more durable than vanilla MLC used in consumer devices and much less expensive than Single-Level Cell (SLC) NAND commonly used for most enterprise SSDs. SLC remains the more robust technology, but at about quadruple the cost and a quarter of the density of EMLC silicon.

Nimbus has managed to layer even more reliability on top of the EMLC silicon by incorporating write amplification, wear leveling and dual-parity RAID into its design. They also over-provision the storage by 28 percent to account for the inevitable degradation of the NAND devices over time. The S1000 employs the higher density 34 nm EMLC NAND from Micron, which makes it possible to offer 400 GB of storage per blade. (Because of the over-provisioning, there is actually 512 GB per blade.) The product comes with a one-year warranty, which is upgradeable to three or five years, although Isakovich believes the hardware will actually be just fine for up to 10 years.

Although S1000 performance may be less than the more expensive SLC-based flash memory products out there, the Nimbus offering easily outruns 15K RPM disk array technology typically found in tier 1 storage. Compared to disk, the S-class products deliver up to 24 times more IOPS (1.65 million), up to 16 times faster data transfer (7.2 GB/sec), and 95 percent lower latency (300 microseconds). Space-wise, a single S1000 2U shelf can deliver the same number of IOPS as in four racks of spinning disks.

Since no moving parts are involved, power savings are equally as impressive. Nimbus is claiming 90 percent lower energy usage — as low as 15 watts per terabyte — and a 70 percent reduction in BTU cooling demand. And since there is less heat generated and no motors to wear out, fewer replacements will be needed.

An S1000 shelf is made up of 24 hot-swappable storage blades. Up to 25 shelves can be stacked via 6G SAS ports, making it possible to deploy a 250 GB file system all in flash. A storage shelf is powered by two Intel quad-core Nehalem processors, although Isakovich says expansion shelves don’t require CPUs or the associated memory. According to him, the flash is so much faster than a disk that the CPUs are rarely tied up waiting for I/O to complete, so you just need less of them to manage the storage.

Since all S-class gear speaks iSCSI, NFS, and CIFS, the hardware can act as both a SAN device and a NAS device. Systems come standard with four 10GbE ports (SFP+ or 10GBASE-T) per appliance, which can auto-negotiate down to GbE when needed. Nimbus is also now offering an upgrade to twelve 10GbE ports, using a technology they’re calling “FlexConnect.” It employs triple active-active 10 GbE network controllers, and, in some cases, will eliminate the need for a standalone SAN switch.

The combination of off-the-shelf 10GbE components, Intel CPUs and EMLC NAND chips has enabled Nimbus to achieve cost parity with 15K disks products. All the S-class products, including the new S1000, are priced at $10,000 per terabyte, which is more or less in line with other tier 1 disk-based appliances.

Of course, any vendor could assemble similar hardware, but the S1000 is more than just flash-in-a-box. The real secret sauce is Nimbus’ HALO operating system, a full-featured software stack that comes standard in all S-class platforms. It includes snapshots, replication, mirroring, deduplication, compression, thin provisioning, real-time analytics, proactive notification, and a Web management interface. In late 2010, the company is planning to make a programmable API available as well. Because all this functionality is baked in, there is no need to purchase third-party software or hardware to make the system enterprise-capable. “We think that gives us a sustainable advantage since it has taken us five years to write all this software,” says Isakovich.

Because the company has been able to solve the acquisition cost penalty for flash, while at the same time offering a feature-rich enterprise storage platform, it may be carving a unique home for itself in the IT landscape. Competitors like NetApp, EqualLogic (Dell) and EMC all offer SSD capabilities to one extent or another, but there are no pure flash offerings to match the Nimbus S-class. On the other hand, pure flash array vendors may offer better performance with SLC NAND, but typically bundle little if any software with their systems. And because those systems are based on the more expensive SLC technology, they come at a price premium.

With the S-class platform, Nimbus is looking to go after IOPS-critical storage applications, especially virtualization, traditional database processing, and On-Line Transaction Processing (OLTP). Now, with the higher capacity S1000, they have a credible entry for the HPC market. Data-intensive applications like seismic analysis, image rendering, and many science codes are I/O bound and thus ideally suited for flash-based storage. Isakovich says they have a proof of concept deployment at one of the big supercomputing centers and also have a couple of oil and gas companies looking at systems. He expects to see some customer deployments by the end of the quarter.

The new platform currently tops out at 250 TB per system, but the dedupe and compression technology can boost the effective storage by a factor of 3 to 10, pushing the S1000 into the petascale realm. According to Isakovich, they’re planning to expand system capacity even further later this year. “The demand we’re seeing from the HPC community is rather significant and we think we can continue to push the density envelope even more,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This